New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impbid2 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | ⊢ (ψ → χ) |
impbid2.2 | ⊢ (φ → (χ → ψ)) |
Ref | Expression |
---|---|
impbid2 | ⊢ (φ → (ψ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 ⊢ (φ → (χ → ψ)) | |
2 | impbid2.1 | . . 3 ⊢ (ψ → χ) | |
3 | 1, 2 | impbid1 194 | . 2 ⊢ (φ → (χ ↔ ψ)) |
4 | 3 | bicomd 192 | 1 ⊢ (φ → (ψ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biimt 325 biorf 394 biorfi 396 pm4.72 846 biort 866 bimsc1 904 euan 2261 cgsexg 2891 cgsex2g 2892 cgsex4g 2893 elab3gf 2991 abidnf 3006 elsnc2g 3762 difsn 3846 eqsn 3868 dfnfc2 3910 intmin4 3956 dfiin2g 4001 eqpw1uni 4331 eqfnfv 5393 ffvresb 5432 fnoprabg 5586 ncssfin 6152 ce0lenc1 6240 |
Copyright terms: Public domain | W3C validator |