New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merco1lem13 | GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem13 | ⊢ ((((φ → ψ) → (χ → ψ)) → τ) → (φ → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1 1478 | . . . 4 ⊢ (((((ψ → φ) → (χ → ⊥ )) → φ) → φ) → ((φ → ψ) → (χ → ψ))) | |
2 | merco1lem4 1484 | . . . 4 ⊢ ((((((ψ → φ) → (χ → ⊥ )) → φ) → φ) → ((φ → ψ) → (χ → ψ))) → (φ → ((φ → ψ) → (χ → ψ)))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (φ → ((φ → ψ) → (χ → ψ))) |
4 | merco1lem12 1493 | . . 3 ⊢ ((φ → ((φ → ψ) → (χ → ψ))) → ((((τ → φ) → (φ → ⊥ )) → φ) → ((φ → ψ) → (χ → ψ)))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((((τ → φ) → (φ → ⊥ )) → φ) → ((φ → ψ) → (χ → ψ))) |
6 | merco1 1478 | . 2 ⊢ (((((τ → φ) → (φ → ⊥ )) → φ) → ((φ → ψ) → (χ → ψ))) → ((((φ → ψ) → (χ → ψ)) → τ) → (φ → τ))) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ((((φ → ψ) → (χ → ψ)) → τ) → (φ → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: merco1lem14 1495 merco1lem15 1496 retbwax1 1500 |
Copyright terms: Public domain | W3C validator |