Proof of Theorem merco1lem12
Step | Hyp | Ref
| Expression |
1 | | merco1lem3 1483 |
. . . . 5
⊢ ((((φ → τ) → (((χ → (φ → τ)) → φ) → ⊥ )) → (χ → ⊥ )) → (χ → (φ → τ))) |
2 | | merco1 1478 |
. . . . 5
⊢ (((((φ → τ) → (((χ → (φ → τ)) → φ) → ⊥ )) → (χ → ⊥ )) → (χ → (φ → τ))) → (((χ → (φ → τ)) → φ) → (((χ → (φ → τ)) → φ) → φ))) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (((χ → (φ → τ)) → φ) → (((χ → (φ → τ)) → φ) → φ)) |
4 | | merco1lem9 1490 |
. . . 4
⊢ ((((χ → (φ → τ)) → φ) → (((χ → (φ → τ)) → φ) → φ)) → (((χ → (φ → τ)) → φ) → φ)) |
5 | 3, 4 | ax-mp 5 |
. . 3
⊢ (((χ → (φ → τ)) → φ) → φ) |
6 | | merco1lem11 1492 |
. . 3
⊢ ((((χ → (φ → τ)) → φ) → φ) → ((((ψ → φ) → (((χ → (φ → τ)) → φ) → ⊥ )) → ⊥ ) →
φ)) |
7 | 5, 6 | ax-mp 5 |
. 2
⊢ ((((ψ → φ) → (((χ → (φ → τ)) → φ) → ⊥ )) → ⊥ ) →
φ) |
8 | | merco1 1478 |
. 2
⊢ (((((ψ → φ) → (((χ → (φ → τ)) → φ) → ⊥ )) → ⊥ ) →
φ) → ((φ → ψ) → (((χ → (φ → τ)) → φ) → ψ))) |
9 | 7, 8 | ax-mp 5 |
1
⊢ ((φ → ψ) → (((χ → (φ → τ)) → φ) → ψ)) |