| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > merco1lem15 | GIF version | ||
| Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merco1lem15 | ⊢ ((φ → ψ) → (φ → (χ → ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1lem14 1495 | . 2 ⊢ ((((φ → ψ) → ψ) → (χ → ψ)) → (φ → (χ → ψ))) | |
| 2 | merco1lem13 1494 | . 2 ⊢ (((((φ → ψ) → ψ) → (χ → ψ)) → (φ → (χ → ψ))) → ((φ → ψ) → (φ → (χ → ψ)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((φ → ψ) → (φ → (χ → ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
| This theorem is referenced by: merco1lem16 1497 retbwax1 1500 |
| Copyright terms: Public domain | W3C validator |