New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merco1lem16 | GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1478. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem16 | ⊢ (((φ → (ψ → χ)) → τ) → ((φ → χ) → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1lem15 1496 | . . 3 ⊢ ((φ → χ) → (φ → (ψ → χ))) | |
2 | merco1lem11 1492 | . . 3 ⊢ (((φ → χ) → (φ → (ψ → χ))) → ((((τ → φ) → ((φ → χ) → ⊥ )) → ⊥ ) → (φ → (ψ → χ)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((τ → φ) → ((φ → χ) → ⊥ )) → ⊥ ) → (φ → (ψ → χ))) |
4 | merco1 1478 | . 2 ⊢ (((((τ → φ) → ((φ → χ) → ⊥ )) → ⊥ ) → (φ → (ψ → χ))) → (((φ → (ψ → χ)) → τ) → ((φ → χ) → τ))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (((φ → (ψ → χ)) → τ) → ((φ → χ) → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: merco1lem17 1498 retbwax1 1500 |
Copyright terms: Public domain | W3C validator |