New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp4an | GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ φ |
mp4an.2 | ⊢ ψ |
mp4an.3 | ⊢ χ |
mp4an.4 | ⊢ θ |
mp4an.5 | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) |
Ref | Expression |
---|---|
mp4an | ⊢ τ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ φ | |
2 | mp4an.2 | . . 3 ⊢ ψ | |
3 | 1, 2 | pm3.2i 441 | . 2 ⊢ (φ ∧ ψ) |
4 | mp4an.3 | . . 3 ⊢ χ | |
5 | mp4an.4 | . . 3 ⊢ θ | |
6 | 4, 5 | pm3.2i 441 | . 2 ⊢ (χ ∧ θ) |
7 | mp4an.5 | . 2 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) | |
8 | 3, 6, 7 | mp2an 653 | 1 ⊢ τ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: tfin0c 4498 tc0c 6164 tcdi 6165 tc1c 6166 |
Copyright terms: Public domain | W3C validator |