NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mp4an GIF version

Theorem mp4an 654
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
mp4an.1 φ
mp4an.2 ψ
mp4an.3 χ
mp4an.4 θ
mp4an.5 (((φ ψ) (χ θ)) → τ)
Assertion
Ref Expression
mp4an τ

Proof of Theorem mp4an
StepHypRef Expression
1 mp4an.1 . . 3 φ
2 mp4an.2 . . 3 ψ
31, 2pm3.2i 441 . 2 (φ ψ)
4 mp4an.3 . . 3 χ
5 mp4an.4 . . 3 θ
64, 5pm3.2i 441 . 2 (χ θ)
7 mp4an.5 . 2 (((φ ψ) (χ θ)) → τ)
83, 6, 7mp2an 653 1 τ
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  tfin0c  4498  tc0c  6164  tcdi  6165  tc1c  6166
  Copyright terms: Public domain W3C validator