| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp4an | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| mp4an.1 | ⊢ φ |
| mp4an.2 | ⊢ ψ |
| mp4an.3 | ⊢ χ |
| mp4an.4 | ⊢ θ |
| mp4an.5 | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) |
| Ref | Expression |
|---|---|
| mp4an | ⊢ τ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp4an.1 | . . 3 ⊢ φ | |
| 2 | mp4an.2 | . . 3 ⊢ ψ | |
| 3 | 1, 2 | pm3.2i 441 | . 2 ⊢ (φ ∧ ψ) |
| 4 | mp4an.3 | . . 3 ⊢ χ | |
| 5 | mp4an.4 | . . 3 ⊢ θ | |
| 6 | 4, 5 | pm3.2i 441 | . 2 ⊢ (χ ∧ θ) |
| 7 | mp4an.5 | . 2 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) | |
| 8 | 3, 6, 7 | mp2an 653 | 1 ⊢ τ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: tfin0c 4498 tc0c 6164 tcdi 6165 tc1c 6166 |
| Copyright terms: Public domain | W3C validator |