New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpan2d | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpan2d.1 | ⊢ (φ → χ) |
mpan2d.2 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Ref | Expression |
---|---|
mpan2d | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2d.1 | . 2 ⊢ (φ → χ) | |
2 | mpan2d.2 | . . 3 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
3 | 2 | exp3a 425 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
4 | 1, 3 | mpid 37 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpand 656 mpan2i 658 ltfintri 4467 leconnnc 6219 nclenn 6250 ncslesuc 6268 nchoicelem4 6293 |
Copyright terms: Public domain | W3C validator |