Step | Hyp | Ref
| Expression |
1 | | eeanv 1913 |
. . 3
⊢ (∃x∃y(A = Nc x ∧ B = Nc y) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) |
2 | | vex 2863 |
. . . . . . . 8
⊢ x ∈
V |
3 | | 0ex 4111 |
. . . . . . . . 9
⊢ ∅ ∈
V |
4 | 3 | complex 4105 |
. . . . . . . 8
⊢ ∼ ∅ ∈
V |
5 | 2, 4 | xpsnen 6050 |
. . . . . . 7
⊢ (x × { ∼ ∅}) ≈ x |
6 | | snex 4112 |
. . . . . . . . 9
⊢ { ∼ ∅} ∈
V |
7 | 2, 6 | xpex 5116 |
. . . . . . . 8
⊢ (x × { ∼ ∅}) ∈
V |
8 | 7 | eqnc 6128 |
. . . . . . 7
⊢ ( Nc (x × {
∼ ∅}) = Nc
x ↔ (x × { ∼ ∅}) ≈ x) |
9 | 5, 8 | mpbir 200 |
. . . . . 6
⊢ Nc (x × {
∼ ∅}) = Nc
x |
10 | 9 | eqeq2i 2363 |
. . . . 5
⊢ (A = Nc (x × { ∼ ∅}) ↔ A =
Nc x) |
11 | | vex 2863 |
. . . . . . . 8
⊢ y ∈
V |
12 | 11, 3 | xpsnen 6050 |
. . . . . . 7
⊢ (y × {∅})
≈ y |
13 | | snex 4112 |
. . . . . . . . 9
⊢ {∅} ∈
V |
14 | 11, 13 | xpex 5116 |
. . . . . . . 8
⊢ (y × {∅})
∈ V |
15 | 14 | eqnc 6128 |
. . . . . . 7
⊢ ( Nc (y × {∅}) = Nc y ↔ (y
× {∅}) ≈ y) |
16 | 12, 15 | mpbir 200 |
. . . . . 6
⊢ Nc (y × {∅}) = Nc y |
17 | 16 | eqeq2i 2363 |
. . . . 5
⊢ (B = Nc (y × {∅})
↔ B = Nc
y) |
18 | 10, 17 | anbi12i 678 |
. . . 4
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
↔ (A = Nc
x ∧
B = Nc
y)) |
19 | 18 | 2exbii 1583 |
. . 3
⊢ (∃x∃y(A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
↔ ∃x∃y(A = Nc x ∧ B = Nc y)) |
20 | | elncs 6120 |
. . . 4
⊢ (A ∈ NC ↔ ∃x A = Nc x) |
21 | | elncs 6120 |
. . . 4
⊢ (B ∈ NC ↔ ∃y B = Nc y) |
22 | 20, 21 | anbi12i 678 |
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ) ↔ (∃x A = Nc x ∧ ∃y B = Nc y)) |
23 | 1, 19, 22 | 3bitr4ri 269 |
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ) ↔ ∃x∃y(A = Nc (x × {
∼ ∅}) ∧
B = Nc
(y × {∅}))) |
24 | 7 | ncelncsi 6122 |
. . . . . . 7
⊢ Nc (x × {
∼ ∅}) ∈ NC |
25 | 14 | ncelncsi 6122 |
. . . . . . 7
⊢ Nc (y × {∅}) ∈ NC |
26 | | ncaddccl 6145 |
. . . . . . 7
⊢ (( Nc (x × {
∼ ∅}) ∈ NC ∧ Nc (y × {∅})
∈ NC ) → (
Nc (x ×
{ ∼ ∅}) +c Nc (y × {∅})) ∈ NC ) |
27 | 24, 25, 26 | mp2an 653 |
. . . . . 6
⊢ ( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) ∈ NC |
28 | | tccl 6161 |
. . . . . 6
⊢ (( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) ∈ NC → Tc (
Nc (x ×
{ ∼ ∅}) +c Nc (y × {∅})) ∈ NC ) |
29 | 27, 28 | ax-mp 5 |
. . . . 5
⊢ Tc ( Nc
(x × { ∼ ∅}) +c Nc (y × {∅})) ∈ NC |
30 | | tccl 6161 |
. . . . . . 7
⊢ ( Nc (x × {
∼ ∅}) ∈ NC → Tc Nc (x × { ∼ ∅}) ∈ NC ) |
31 | 24, 30 | ax-mp 5 |
. . . . . 6
⊢ Tc Nc (x × { ∼ ∅}) ∈ NC |
32 | | tccl 6161 |
. . . . . . 7
⊢ ( Nc (y × {∅}) ∈ NC → Tc
Nc (y ×
{∅}) ∈
NC ) |
33 | 25, 32 | ax-mp 5 |
. . . . . 6
⊢ Tc Nc (y × {∅})
∈ NC |
34 | | ncaddccl 6145 |
. . . . . 6
⊢ (( Tc Nc (x × { ∼ ∅}) ∈ NC ∧ Tc Nc (y × {∅})
∈ NC ) → (
Tc Nc
(x × { ∼ ∅}) +c Tc Nc (y × {∅}))
∈ NC
) |
35 | 31, 33, 34 | mp2an 653 |
. . . . 5
⊢ ( Tc Nc (x × { ∼ ∅}) +c Tc Nc (y × {∅}))
∈ NC |
36 | 7 | ncid 6124 |
. . . . . . 7
⊢ (x × { ∼ ∅}) ∈ Nc (x × {
∼ ∅}) |
37 | 14 | ncid 6124 |
. . . . . . 7
⊢ (y × {∅})
∈ Nc (y × {∅}) |
38 | | necompl 3545 |
. . . . . . . 8
⊢ ∼ ∅ ≠ ∅ |
39 | 4, 38 | xpnedisj 5514 |
. . . . . . 7
⊢ ((x × { ∼ ∅}) ∩ (y
× {∅})) = ∅ |
40 | | eladdci 4400 |
. . . . . . 7
⊢ (((x × { ∼ ∅}) ∈ Nc (x × {
∼ ∅}) ∧
(y × {∅}) ∈ Nc (y × {∅}) ∧ ((x × { ∼ ∅}) ∩ (y
× {∅})) = ∅) → ((x
× { ∼ ∅}) ∪ (y × {∅}))
∈ ( Nc (x × { ∼ ∅}) +c Nc (y × {∅}))) |
41 | 36, 37, 39, 40 | mp3an 1277 |
. . . . . 6
⊢ ((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ ( Nc (x × { ∼ ∅}) +c Nc (y × {∅})) |
42 | | pw1eltc 6163 |
. . . . . 6
⊢ ((( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) ∈ NC ∧ ((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ ( Nc (x × { ∼ ∅}) +c Nc (y × {∅}))) → ℘1((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ Tc (
Nc (x ×
{ ∼ ∅}) +c Nc (y × {∅}))) |
43 | 27, 41, 42 | mp2an 653 |
. . . . 5
⊢ ℘1((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ Tc (
Nc (x ×
{ ∼ ∅}) +c Nc (y × {∅})) |
44 | | pw1un 4164 |
. . . . . 6
⊢ ℘1((x × { ∼ ∅}) ∪ (y
× {∅})) = (℘1(x × { ∼ ∅}) ∪ ℘1(y × {∅})) |
45 | | pw1eltc 6163 |
. . . . . . . 8
⊢ (( Nc (x × {
∼ ∅}) ∈ NC ∧ (x × {
∼ ∅}) ∈ Nc (x × { ∼ ∅})) → ℘1(x × { ∼ ∅}) ∈ Tc Nc (x × { ∼ ∅})) |
46 | 24, 36, 45 | mp2an 653 |
. . . . . . 7
⊢ ℘1(x × { ∼ ∅}) ∈ Tc Nc (x × { ∼ ∅}) |
47 | | pw1eltc 6163 |
. . . . . . . 8
⊢ (( Nc (y × {∅}) ∈ NC ∧ (y × {∅})
∈ Nc (y × {∅}))
→ ℘1(y × {∅})
∈ Tc
Nc (y ×
{∅})) |
48 | 25, 37, 47 | mp2an 653 |
. . . . . . 7
⊢ ℘1(y × {∅})
∈ Tc
Nc (y ×
{∅}) |
49 | | pw1eq 4144 |
. . . . . . . . 9
⊢ (((x × { ∼ ∅}) ∩ (y
× {∅})) = ∅ → ℘1((x × { ∼ ∅}) ∩ (y
× {∅})) = ℘1∅) |
50 | 39, 49 | ax-mp 5 |
. . . . . . . 8
⊢ ℘1((x × { ∼ ∅}) ∩ (y
× {∅})) = ℘1∅ |
51 | | pw1in 4165 |
. . . . . . . 8
⊢ ℘1((x × { ∼ ∅}) ∩ (y
× {∅})) = (℘1(x × { ∼ ∅}) ∩ ℘1(y × {∅})) |
52 | | pw10 4162 |
. . . . . . . 8
⊢ ℘1∅
= ∅ |
53 | 50, 51, 52 | 3eqtr3i 2381 |
. . . . . . 7
⊢ (℘1(x × { ∼ ∅}) ∩ ℘1(y × {∅})) =
∅ |
54 | | eladdci 4400 |
. . . . . . 7
⊢ ((℘1(x × { ∼ ∅}) ∈ Tc Nc (x × { ∼ ∅}) ∧ ℘1(y × {∅})
∈ Tc
Nc (y ×
{∅}) ∧
(℘1(x × { ∼ ∅}) ∩ ℘1(y × {∅})) =
∅) → (℘1(x × { ∼ ∅}) ∪ ℘1(y × {∅}))
∈ ( Tc Nc (x × { ∼ ∅}) +c Tc Nc (y × {∅}))) |
55 | 46, 48, 53, 54 | mp3an 1277 |
. . . . . 6
⊢ (℘1(x × { ∼ ∅}) ∪ ℘1(y × {∅}))
∈ ( Tc Nc (x × { ∼ ∅}) +c Tc Nc (y × {∅})) |
56 | 44, 55 | eqeltri 2423 |
. . . . 5
⊢ ℘1((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ ( Tc
Nc (x ×
{ ∼ ∅}) +c Tc Nc (y × {∅})) |
57 | | nceleq 6150 |
. . . . 5
⊢ ((( Tc ( Nc
(x × { ∼ ∅}) +c Nc (y × {∅})) ∈ NC ∧ ( Tc Nc (x × { ∼ ∅}) +c Tc Nc (y × {∅}))
∈ NC ) ∧ (℘1((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ Tc (
Nc (x ×
{ ∼ ∅}) +c Nc (y × {∅})) ∧ ℘1((x × { ∼ ∅}) ∪ (y
× {∅})) ∈ ( Tc
Nc (x ×
{ ∼ ∅}) +c Tc Nc (y × {∅}))))
→ Tc ( Nc (x × {
∼ ∅}) +c Nc (y × {∅})) = ( Tc Nc (x × { ∼ ∅}) +c Tc Nc (y × {∅}))) |
58 | 29, 35, 43, 56, 57 | mp4an 654 |
. . . 4
⊢ Tc ( Nc
(x × { ∼ ∅}) +c Nc (y × {∅})) = ( Tc Nc (x × { ∼ ∅}) +c Tc Nc (y × {∅})) |
59 | | addceq12 4386 |
. . . . 5
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ (A +c B) = ( Nc (x × { ∼ ∅}) +c Nc (y × {∅}))) |
60 | | tceq 6159 |
. . . . 5
⊢ ((A +c B) = ( Nc (x × { ∼ ∅}) +c Nc (y × {∅})) → Tc (A
+c B) = Tc ( Nc
(x × { ∼ ∅}) +c Nc (y × {∅}))) |
61 | 59, 60 | syl 15 |
. . . 4
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ Tc (A +c B) = Tc (
Nc (x ×
{ ∼ ∅}) +c Nc (y × {∅}))) |
62 | | tceq 6159 |
. . . . . 6
⊢ (A = Nc (x × { ∼ ∅}) → Tc A =
Tc Nc
(x × { ∼ ∅})) |
63 | 62 | adantr 451 |
. . . . 5
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ Tc A = Tc Nc (x × {
∼ ∅})) |
64 | | tceq 6159 |
. . . . . 6
⊢ (B = Nc (y × {∅})
→ Tc B = Tc Nc (y × {∅})) |
65 | 64 | adantl 452 |
. . . . 5
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ Tc B = Tc Nc (y × {∅})) |
66 | 63, 65 | addceq12d 4392 |
. . . 4
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ ( Tc A +c Tc B) = (
Tc Nc
(x × { ∼ ∅}) +c Tc Nc (y × {∅}))) |
67 | 58, 61, 66 | 3eqtr4a 2411 |
. . 3
⊢ ((A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ Tc (A +c B) = ( Tc
A +c Tc B)) |
68 | 67 | exlimivv 1635 |
. 2
⊢ (∃x∃y(A = Nc (x × { ∼ ∅}) ∧ B = Nc (y × {∅}))
→ Tc (A +c B) = ( Tc
A +c Tc B)) |
69 | 23, 68 | sylbi 187 |
1
⊢ ((A ∈ NC ∧ B ∈ NC ) → Tc
(A +c B) = ( Tc
A +c Tc B)) |