NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jctl GIF version

Theorem jctl 525
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1 ψ
Assertion
Ref Expression
jctl (φ → (ψ φ))

Proof of Theorem jctl
StepHypRef Expression
1 id 19 . 2 (φφ)
2 jctl.1 . 2 ψ
31, 2jctil 523 1 (φ → (ψ φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  mpanl1  661  mpanlr1  667  nchoicelem5  6294
  Copyright terms: Public domain W3C validator