NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpid GIF version

Theorem mpid 37
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
mpid.1 (φχ)
mpid.2 (φ → (ψ → (χθ)))
Assertion
Ref Expression
mpid (φ → (ψθ))

Proof of Theorem mpid
StepHypRef Expression
1 mpid.1 . . 3 (φχ)
21a1d 22 . 2 (φ → (ψχ))
3 mpid.2 . 2 (φ → (ψ → (χθ)))
42, 3mpdd 36 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mp2d  41  pm2.43a  45  embantd  50  mtord  641  mpan2d  655  ceqsalt  2882  rspcimdv  2957  nndisjeq  4430
  Copyright terms: Public domain W3C validator