Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . . . . 8
⊢ p ∈
V |
2 | 1 | elcompl 3226 |
. . . . . . 7
⊢ (p ∈ ∼ ( ∼
( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) ↔ ¬ p
∈ ( ∼ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn )) |
3 | 1 | elimak 4260 |
. . . . . . . . 9
⊢ (p ∈ ( ∼ (
∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) ↔ ∃n ∈ Nn ⟪n,
p⟫ ∈ ∼ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik )) |
4 | | opkex 4114 |
. . . . . . . . . . . 12
⊢ ⟪n, p⟫
∈ V |
5 | 4 | elcompl 3226 |
. . . . . . . . . . 11
⊢ (⟪n, p⟫
∈ ∼ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ↔ ¬ ⟪n, p⟫
∈ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik )) |
6 | | elun 3221 |
. . . . . . . . . . . 12
⊢ (⟪n, p⟫
∈ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ↔ (⟪n,
p⟫ ∈ ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∨ ⟪n,
p⟫ ∈ Ik )) |
7 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ n ∈
V |
8 | 7, 1 | ndisjrelk 4324 |
. . . . . . . . . . . . . . 15
⊢ (⟪n, p⟫
∈ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔
(n ∩ p) ≠ ∅) |
9 | 8 | notbii 287 |
. . . . . . . . . . . . . 14
⊢ (¬
⟪n, p⟫ ∈ ((
Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔ ¬
(n ∩ p) ≠ ∅) |
10 | 4 | elcompl 3226 |
. . . . . . . . . . . . . 14
⊢ (⟪n, p⟫
∈ ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔ ¬
⟪n, p⟫ ∈ ((
Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c)) |
11 | | df-ne 2519 |
. . . . . . . . . . . . . . 15
⊢ ((n ∩ p) ≠
∅ ↔ ¬ (n ∩ p) =
∅) |
12 | 11 | con2bii 322 |
. . . . . . . . . . . . . 14
⊢ ((n ∩ p) =
∅ ↔ ¬ (n ∩ p) ≠
∅) |
13 | 9, 10, 12 | 3bitr4i 268 |
. . . . . . . . . . . . 13
⊢ (⟪n, p⟫
∈ ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔
(n ∩ p) = ∅) |
14 | | opkelidkg 4275 |
. . . . . . . . . . . . . 14
⊢ ((n ∈ V ∧ p ∈ V) → (⟪n, p⟫
∈ Ik ↔ n = p)) |
15 | 7, 1, 14 | mp2an 653 |
. . . . . . . . . . . . 13
⊢ (⟪n, p⟫
∈ Ik ↔ n = p) |
16 | 13, 15 | orbi12i 507 |
. . . . . . . . . . . 12
⊢ ((⟪n, p⟫
∈ ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∨ ⟪n,
p⟫ ∈ Ik ) ↔ ((n ∩ p) =
∅ ∨
n = p)) |
17 | | incom 3449 |
. . . . . . . . . . . . . 14
⊢ (n ∩ p) =
(p ∩ n) |
18 | 17 | eqeq1i 2360 |
. . . . . . . . . . . . 13
⊢ ((n ∩ p) =
∅ ↔ (p ∩ n) =
∅) |
19 | | eqcom 2355 |
. . . . . . . . . . . . 13
⊢ (n = p ↔
p = n) |
20 | 18, 19 | orbi12i 507 |
. . . . . . . . . . . 12
⊢ (((n ∩ p) =
∅ ∨
n = p)
↔ ((p ∩ n) = ∅ ∨ p = n)) |
21 | 6, 16, 20 | 3bitri 262 |
. . . . . . . . . . 11
⊢ (⟪n, p⟫
∈ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ↔ ((p ∩
n) = ∅
∨ p =
n)) |
22 | 5, 21 | xchbinx 301 |
. . . . . . . . . 10
⊢ (⟪n, p⟫
∈ ∼ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ↔ ¬ ((p
∩ n) = ∅ ∨ p = n)) |
23 | 22 | rexbii 2640 |
. . . . . . . . 9
⊢ (∃n ∈ Nn ⟪n, p⟫
∈ ∼ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ↔ ∃n ∈ Nn ¬ ((p ∩
n) = ∅
∨ p =
n)) |
24 | | rexnal 2626 |
. . . . . . . . 9
⊢ (∃n ∈ Nn ¬ ((p ∩ n) =
∅ ∨
p = n)
↔ ¬ ∀n ∈ Nn ((p ∩
n) = ∅
∨ p =
n)) |
25 | 3, 23, 24 | 3bitri 262 |
. . . . . . . 8
⊢ (p ∈ ( ∼ (
∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) ↔ ¬ ∀n ∈ Nn ((p ∩ n) =
∅ ∨
p = n)) |
26 | 25 | con2bii 322 |
. . . . . . 7
⊢ (∀n ∈ Nn ((p ∩ n) =
∅ ∨
p = n)
↔ ¬ p ∈ ( ∼ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn )) |
27 | 2, 26 | bitr4i 243 |
. . . . . 6
⊢ (p ∈ ∼ ( ∼
( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) ↔ ∀n ∈ Nn ((p ∩ n) =
∅ ∨
p = n)) |
28 | 27 | abbi2i 2465 |
. . . . 5
⊢ ∼ ( ∼ (
∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) = {p ∣ ∀n ∈ Nn ((p ∩
n) = ∅
∨ p =
n)} |
29 | | ssetkex 4295 |
. . . . . . . . . . . . 13
⊢ Sk ∈
V |
30 | 29 | ins3kex 4309 |
. . . . . . . . . . . 12
⊢ Ins3k Sk ∈
V |
31 | 29 | ins2kex 4308 |
. . . . . . . . . . . 12
⊢ Ins2k Sk ∈
V |
32 | 30, 31 | inex 4106 |
. . . . . . . . . . 11
⊢ ( Ins3k Sk ∩ Ins2k Sk ) ∈ V |
33 | | 1cex 4143 |
. . . . . . . . . . . . 13
⊢
1c ∈
V |
34 | 33 | pw1ex 4304 |
. . . . . . . . . . . 12
⊢ ℘11c ∈ V |
35 | 34 | pw1ex 4304 |
. . . . . . . . . . 11
⊢ ℘1℘11c ∈ V |
36 | 32, 35 | imakex 4301 |
. . . . . . . . . 10
⊢ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∈ V |
37 | 36 | complex 4105 |
. . . . . . . . 9
⊢ ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∈ V |
38 | | idkex 4315 |
. . . . . . . . 9
⊢
Ik ∈ V |
39 | 37, 38 | unex 4107 |
. . . . . . . 8
⊢ ( ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ∈ V |
40 | 39 | complex 4105 |
. . . . . . 7
⊢ ∼ ( ∼ ((
Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) ∈ V |
41 | | nncex 4397 |
. . . . . . 7
⊢ Nn ∈
V |
42 | 40, 41 | imakex 4301 |
. . . . . 6
⊢ ( ∼ ( ∼ ((
Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) ∈
V |
43 | 42 | complex 4105 |
. . . . 5
⊢ ∼ ( ∼ (
∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∪
Ik ) “k Nn ) ∈
V |
44 | 28, 43 | eqeltrri 2424 |
. . . 4
⊢ {p ∣ ∀n ∈ Nn ((p ∩ n) =
∅ ∨
p = n)}
∈ V |
45 | | df-0c 4378 |
. . . . . . . . . . 11
⊢
0c = {∅} |
46 | 45 | eqeq2i 2363 |
. . . . . . . . . 10
⊢ (p = 0c ↔ p = {∅}) |
47 | 46 | biimpi 186 |
. . . . . . . . 9
⊢ (p = 0c → p = {∅}) |
48 | 47 | ineq1d 3457 |
. . . . . . . 8
⊢ (p = 0c → (p ∩ n) =
({∅} ∩ n)) |
49 | 48 | eqeq1d 2361 |
. . . . . . 7
⊢ (p = 0c → ((p ∩ n) =
∅ ↔ ({∅} ∩ n) =
∅)) |
50 | | incom 3449 |
. . . . . . . . 9
⊢ ({∅} ∩ n) =
(n ∩ {∅}) |
51 | 50 | eqeq1i 2360 |
. . . . . . . 8
⊢ (({∅} ∩ n) =
∅ ↔ (n ∩ {∅}) =
∅) |
52 | | disjsn 3787 |
. . . . . . . 8
⊢ ((n ∩ {∅}) =
∅ ↔ ¬ ∅ ∈ n) |
53 | 51, 52 | bitri 240 |
. . . . . . 7
⊢ (({∅} ∩ n) =
∅ ↔ ¬ ∅ ∈ n) |
54 | 49, 53 | syl6bb 252 |
. . . . . 6
⊢ (p = 0c → ((p ∩ n) =
∅ ↔ ¬ ∅ ∈ n)) |
55 | | eqeq1 2359 |
. . . . . . 7
⊢ (p = 0c → (p = n ↔
0c = n)) |
56 | | eqcom 2355 |
. . . . . . 7
⊢
(0c = n ↔
n = 0c) |
57 | 55, 56 | syl6bb 252 |
. . . . . 6
⊢ (p = 0c → (p = n ↔
n = 0c)) |
58 | 54, 57 | orbi12d 690 |
. . . . 5
⊢ (p = 0c → (((p ∩ n) =
∅ ∨
p = n)
↔ (¬ ∅ ∈ n ∨ n =
0c))) |
59 | 58 | ralbidv 2635 |
. . . 4
⊢ (p = 0c → (∀n ∈ Nn ((p ∩ n) =
∅ ∨
p = n)
↔ ∀n ∈ Nn (¬ ∅ ∈ n ∨ n =
0c))) |
60 | | ineq1 3451 |
. . . . . . . 8
⊢ (p = m →
(p ∩ n) = (m ∩
n)) |
61 | 60 | eqeq1d 2361 |
. . . . . . 7
⊢ (p = m →
((p ∩ n) = ∅ ↔
(m ∩ n) = ∅)) |
62 | | eqeq1 2359 |
. . . . . . 7
⊢ (p = m →
(p = n
↔ m = n)) |
63 | 61, 62 | orbi12d 690 |
. . . . . 6
⊢ (p = m →
(((p ∩ n) = ∅ ∨ p = n) ↔ ((m
∩ n) = ∅ ∨ m = n))) |
64 | 63 | ralbidv 2635 |
. . . . 5
⊢ (p = m →
(∀n
∈ Nn ((p ∩ n) =
∅ ∨
p = n)
↔ ∀n ∈ Nn ((m ∩
n) = ∅
∨ m =
n))) |
65 | | ineq2 3452 |
. . . . . . . 8
⊢ (n = q →
(m ∩ n) = (m ∩
q)) |
66 | 65 | eqeq1d 2361 |
. . . . . . 7
⊢ (n = q →
((m ∩ n) = ∅ ↔
(m ∩ q) = ∅)) |
67 | | equequ2 1686 |
. . . . . . 7
⊢ (n = q →
(m = n
↔ m = q)) |
68 | 66, 67 | orbi12d 690 |
. . . . . 6
⊢ (n = q →
(((m ∩ n) = ∅ ∨ m = n) ↔ ((m
∩ q) = ∅ ∨ m = q))) |
69 | 68 | cbvralv 2836 |
. . . . 5
⊢ (∀n ∈ Nn ((m ∩ n) =
∅ ∨
m = n)
↔ ∀q ∈ Nn ((m ∩
q) = ∅
∨ m =
q)) |
70 | 64, 69 | syl6bb 252 |
. . . 4
⊢ (p = m →
(∀n
∈ Nn ((p ∩ n) =
∅ ∨
p = n)
↔ ∀q ∈ Nn ((m ∩
q) = ∅
∨ m =
q))) |
71 | | ineq1 3451 |
. . . . . . 7
⊢ (p = (m
+c 1c) → (p ∩ n) =
((m +c
1c) ∩ n)) |
72 | 71 | eqeq1d 2361 |
. . . . . 6
⊢ (p = (m
+c 1c) → ((p ∩ n) =
∅ ↔ ((m +c 1c) ∩
n) = ∅)) |
73 | | eqeq1 2359 |
. . . . . 6
⊢ (p = (m
+c 1c) → (p = n ↔
(m +c
1c) = n)) |
74 | 72, 73 | orbi12d 690 |
. . . . 5
⊢ (p = (m
+c 1c) → (((p ∩ n) =
∅ ∨
p = n)
↔ (((m +c
1c) ∩ n) = ∅ ∨ (m +c 1c) =
n))) |
75 | 74 | ralbidv 2635 |
. . . 4
⊢ (p = (m
+c 1c) → (∀n ∈ Nn ((p ∩ n) =
∅ ∨
p = n)
↔ ∀n ∈ Nn (((m
+c 1c) ∩ n) = ∅ ∨ (m
+c 1c) = n))) |
76 | | ineq1 3451 |
. . . . . . 7
⊢ (p = M →
(p ∩ n) = (M ∩
n)) |
77 | 76 | eqeq1d 2361 |
. . . . . 6
⊢ (p = M →
((p ∩ n) = ∅ ↔
(M ∩ n) = ∅)) |
78 | | eqeq1 2359 |
. . . . . 6
⊢ (p = M →
(p = n
↔ M = n)) |
79 | 77, 78 | orbi12d 690 |
. . . . 5
⊢ (p = M →
(((p ∩ n) = ∅ ∨ p = n) ↔ ((M
∩ n) = ∅ ∨ M = n))) |
80 | 79 | ralbidv 2635 |
. . . 4
⊢ (p = M →
(∀n
∈ Nn ((p ∩ n) =
∅ ∨
p = n)
↔ ∀n ∈ Nn ((M ∩
n) = ∅
∨ M =
n))) |
81 | | nnc0suc 4413 |
. . . . . . 7
⊢ (n ∈ Nn ↔ (n =
0c ∨ ∃m ∈ Nn n = (m
+c 1c))) |
82 | | 0nelsuc 4401 |
. . . . . . . . . . . 12
⊢ ¬ ∅ ∈ (m +c
1c) |
83 | | eleq2 2414 |
. . . . . . . . . . . . 13
⊢ (n = (m
+c 1c) → (∅ ∈ n ↔ ∅ ∈ (m
+c 1c))) |
84 | 83 | biimpcd 215 |
. . . . . . . . . . . 12
⊢ (∅ ∈ n → (n =
(m +c
1c) → ∅ ∈ (m
+c 1c))) |
85 | 82, 84 | mtoi 169 |
. . . . . . . . . . 11
⊢ (∅ ∈ n → ¬ n
= (m +c
1c)) |
86 | 85 | adantr 451 |
. . . . . . . . . 10
⊢ ((∅ ∈ n ∧ m ∈ Nn ) → ¬ n
= (m +c
1c)) |
87 | 86 | nrexdv 2718 |
. . . . . . . . 9
⊢ (∅ ∈ n → ¬ ∃m ∈ Nn n = (m
+c 1c)) |
88 | | orel2 372 |
. . . . . . . . 9
⊢ (¬ ∃m ∈ Nn n = (m
+c 1c) → ((n = 0c
∨ ∃m ∈ Nn n = (m +c 1c)) →
n = 0c)) |
89 | 87, 88 | syl 15 |
. . . . . . . 8
⊢ (∅ ∈ n → ((n =
0c ∨ ∃m ∈ Nn n = (m
+c 1c)) → n = 0c)) |
90 | 89 | com12 27 |
. . . . . . 7
⊢ ((n = 0c
∨ ∃m ∈ Nn n = (m +c 1c)) →
(∅ ∈
n → n = 0c)) |
91 | 81, 90 | sylbi 187 |
. . . . . 6
⊢ (n ∈ Nn → (∅ ∈ n →
n = 0c)) |
92 | | imor 401 |
. . . . . 6
⊢ ((∅ ∈ n → n =
0c) ↔ (¬ ∅ ∈ n ∨ n =
0c)) |
93 | 91, 92 | sylib 188 |
. . . . 5
⊢ (n ∈ Nn → (¬ ∅
∈ n ∨ n =
0c)) |
94 | 93 | rgen 2680 |
. . . 4
⊢ ∀n ∈ Nn (¬ ∅ ∈ n ∨ n = 0c) |
95 | | neq0 3561 |
. . . . . . . . 9
⊢ (¬ ((m +c 1c) ∩
n) = ∅
↔ ∃a a ∈ ((m
+c 1c) ∩ n)) |
96 | | elin 3220 |
. . . . . . . . . . 11
⊢ (a ∈ ((m +c 1c) ∩
n) ↔ (a ∈ (m +c 1c) ∧ a ∈ n)) |
97 | | elsuc 4414 |
. . . . . . . . . . . . 13
⊢ (a ∈ (m +c 1c) ↔
∃b ∈ m ∃x ∈ ∼ ba = (b ∪ {x})) |
98 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ x ∈
V |
99 | 98 | elcompl 3226 |
. . . . . . . . . . . . . . . 16
⊢ (x ∈ ∼ b ↔ ¬ x
∈ b) |
100 | 99 | anbi2i 675 |
. . . . . . . . . . . . . . 15
⊢ ((b ∈ m ∧ x ∈ ∼ b) ↔ (b
∈ m ∧ ¬ x ∈ b)) |
101 | | simp1r 980 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
n ∈ Nn ) |
102 | | nnc0suc 4413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (n ∈ Nn ↔ (n =
0c ∨ ∃p ∈ Nn n = (p
+c 1c))) |
103 | 101, 102 | sylib 188 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
(n = 0c ∨ ∃p ∈ Nn n = (p +c
1c))) |
104 | | ssun2 3428 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {x} ⊆ (b ∪ {x}) |
105 | 98 | snid 3761 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ x ∈ {x} |
106 | 104, 105 | sselii 3271 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ x ∈ (b ∪ {x}) |
107 | | n0i 3556 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (x ∈ (b ∪ {x})
→ ¬ (b ∪ {x}) = ∅) |
108 | 106, 107 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬ (b ∪ {x}) =
∅ |
109 | 45 | eleq2i 2417 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((b ∪ {x})
∈ 0c ↔ (b ∪ {x})
∈ {∅}) |
110 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ b ∈
V |
111 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {x} ∈
V |
112 | 110, 111 | unex 4107 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (b ∪ {x})
∈ V |
113 | 112 | elsnc 3757 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((b ∪ {x})
∈ {∅}
↔ (b ∪ {x}) = ∅) |
114 | 109, 113 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((b ∪ {x})
∈ 0c ↔ (b ∪ {x}) =
∅) |
115 | 108, 114 | mtbir 290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ¬ (b ∪ {x})
∈ 0c |
116 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (n = 0c → ((b ∪ {x})
∈ n
↔ (b ∪ {x}) ∈
0c)) |
117 | 116 | biimpcd 215 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((b ∪ {x})
∈ n
→ (n = 0c →
(b ∪ {x}) ∈
0c)) |
118 | 115, 117 | mtoi 169 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((b ∪ {x})
∈ n
→ ¬ n =
0c) |
119 | 118 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → ¬ n = 0c) |
120 | | orel1 371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ n = 0c → ((n = 0c
∨ ∃p ∈ Nn n = (p +c 1c)) →
∃p ∈ Nn n = (p
+c 1c))) |
121 | 119, 120 | syl 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → ((n = 0c
∨ ∃p ∈ Nn n = (p +c 1c)) →
∃p ∈ Nn n = (p
+c 1c))) |
122 | | simpll 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) ∧ (b ∪
{x}) ∈
(p +c
1c)) → p ∈ Nn
) |
123 | | simpr3r 1017 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) →
¬ x ∈
b) |
124 | 123 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) ∧ (b ∪
{x}) ∈
(p +c
1c)) → ¬ x ∈ b) |
125 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) ∧ (b ∪
{x}) ∈
(p +c
1c)) → (b ∪
{x}) ∈
(p +c
1c)) |
126 | 110, 98 | nnsucelr 4429 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((p ∈ Nn ∧ (¬ x ∈ b ∧ (b ∪ {x})
∈ (p
+c 1c))) → b ∈ p) |
127 | 122, 124,
125, 126 | syl12anc 1180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) ∧ (b ∪
{x}) ∈
(p +c
1c)) → b ∈ p) |
128 | 127 | ex 423 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) →
((b ∪ {x}) ∈ (p +c 1c) →
b ∈
p)) |
129 | | ineq2 3452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (q = p →
(m ∩ q) = (m ∩
p)) |
130 | 129 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (q = p →
((m ∩ q) = ∅ ↔
(m ∩ p) = ∅)) |
131 | | equequ2 1686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (q = p →
(m = q
↔ m = p)) |
132 | 130, 131 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (q = p →
(((m ∩ q) = ∅ ∨ m = q) ↔ ((m
∩ p) = ∅ ∨ m = p))) |
133 | 132 | rspccv 2953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
→ (p ∈ Nn → ((m ∩ p) =
∅ ∨
m = p))) |
134 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (b ∈ (m ∩ p)
↔ (b ∈ m ∧ b ∈ p)) |
135 | | n0i 3556 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (b ∈ (m ∩ p)
→ ¬ (m ∩ p) = ∅) |
136 | 134, 135 | sylbir 204 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((b ∈ m ∧ b ∈ p) → ¬ (m ∩ p) =
∅) |
137 | | pm2.53 362 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((m ∩ p) =
∅ ∨
m = p)
→ (¬ (m ∩ p) = ∅ →
m = p)) |
138 | 136, 137 | syl5 28 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((m ∩ p) =
∅ ∨
m = p)
→ ((b ∈ m ∧ b ∈ p) →
m = p)) |
139 | 138 | exp3a 425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((m ∩ p) =
∅ ∨
m = p)
→ (b ∈ m →
(b ∈
p → m = p))) |
140 | 133, 139 | syl6 29 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
→ (p ∈ Nn → (b ∈ m → (b
∈ p
→ m = p)))) |
141 | 140 | com23 72 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
→ (b ∈ m →
(p ∈
Nn → (b
∈ p
→ m = p)))) |
142 | 141 | imp 418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ b ∈ m) →
(p ∈
Nn → (b
∈ p
→ m = p))) |
143 | 142 | adantrr 697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
(p ∈
Nn → (b
∈ p
→ m = p))) |
144 | 143 | 3adant1 973 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
(p ∈
Nn → (b
∈ p
→ m = p))) |
145 | 144 | impcom 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) →
(b ∈
p → m = p)) |
146 | 128, 145 | syld 40 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((p ∈ Nn ∧ ((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b))) →
((b ∪ {x}) ∈ (p +c 1c) →
m = p)) |
147 | 146 | ex 423 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (p ∈ Nn → (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩
q) = ∅
∨ m =
q) ∧
(b ∈
m ∧ ¬
x ∈
b)) → ((b ∪ {x})
∈ (p
+c 1c) → m = p))) |
148 | 147 | com3l 75 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
((b ∪ {x}) ∈ (p +c 1c) →
(p ∈
Nn → m =
p))) |
149 | 148 | imp 418 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
(p +c
1c)) → (p ∈ Nn → m = p)) |
150 | | addceq1 4384 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = p →
(m +c
1c) = (p
+c 1c)) |
151 | 149, 150 | syl6 29 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
(p +c
1c)) → (p ∈ Nn → (m +c 1c) =
(p +c
1c))) |
152 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (n = (p
+c 1c) → ((b ∪ {x})
∈ n
↔ (b ∪ {x}) ∈ (p +c
1c))) |
153 | 152 | anbi2d 684 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (n = (p
+c 1c) → ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) ↔ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
(p +c
1c)))) |
154 | | eqeq2 2362 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (n = (p
+c 1c) → ((m +c 1c) =
n ↔ (m +c 1c) =
(p +c
1c))) |
155 | 154 | imbi2d 307 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (n = (p
+c 1c) → ((p ∈ Nn → (m
+c 1c) = n) ↔ (p
∈ Nn →
(m +c
1c) = (p
+c 1c)))) |
156 | 153, 155 | imbi12d 311 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (n = (p
+c 1c) → (((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → (p ∈ Nn → (m
+c 1c) = n)) ↔ ((((m
∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩
q) = ∅
∨ m =
q) ∧
(b ∈
m ∧ ¬
x ∈
b)) ∧
(b ∪ {x}) ∈ (p +c 1c)) →
(p ∈
Nn → (m
+c 1c) = (p +c
1c))))) |
157 | 151, 156 | mpbiri 224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (n = (p
+c 1c) → ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → (p ∈ Nn → (m
+c 1c) = n))) |
158 | 157 | com3l 75 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → (p ∈ Nn → (n =
(p +c
1c) → (m
+c 1c) = n))) |
159 | 158 | rexlimdv 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → (∃p ∈ Nn n = (p
+c 1c) → (m +c 1c) =
n)) |
160 | 121, 159 | syld 40 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) ∧ (b ∪
{x}) ∈
n) → ((n = 0c
∨ ∃p ∈ Nn n = (p +c 1c)) →
(m +c
1c) = n)) |
161 | 160 | ex 423 |
. . . . . . . . . . . . . . . . . 18
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
((b ∪ {x}) ∈ n → ((n =
0c ∨ ∃p ∈ Nn n = (p
+c 1c)) → (m +c 1c) =
n))) |
162 | 103, 161 | mpid 37 |
. . . . . . . . . . . . . . . . 17
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
∧ (b ∈ m ∧ ¬ x ∈ b)) →
((b ∪ {x}) ∈ n → (m
+c 1c) = n)) |
163 | 162 | 3expa 1151 |
. . . . . . . . . . . . . . . 16
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
∧ (b ∈ m ∧ ¬ x ∈ b)) →
((b ∪ {x}) ∈ n → (m
+c 1c) = n)) |
164 | | eleq1 2413 |
. . . . . . . . . . . . . . . . 17
⊢ (a = (b ∪
{x}) → (a ∈ n ↔ (b
∪ {x}) ∈ n)) |
165 | 164 | imbi1d 308 |
. . . . . . . . . . . . . . . 16
⊢ (a = (b ∪
{x}) → ((a ∈ n → (m
+c 1c) = n) ↔ ((b
∪ {x}) ∈ n →
(m +c
1c) = n))) |
166 | 163, 165 | syl5ibrcom 213 |
. . . . . . . . . . . . . . 15
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
∧ (b ∈ m ∧ ¬ x ∈ b)) →
(a = (b
∪ {x}) → (a ∈ n → (m
+c 1c) = n))) |
167 | 100, 166 | sylan2b 461 |
. . . . . . . . . . . . . 14
⊢ ((((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
∧ (b ∈ m ∧ x ∈ ∼ b))
→ (a = (b ∪ {x})
→ (a ∈ n →
(m +c
1c) = n))) |
168 | 167 | rexlimdvva 2746 |
. . . . . . . . . . . . 13
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ (∃b ∈ m ∃x ∈ ∼ ba = (b ∪ {x})
→ (a ∈ n →
(m +c
1c) = n))) |
169 | 97, 168 | syl5bi 208 |
. . . . . . . . . . . 12
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ (a ∈ (m
+c 1c) → (a ∈ n → (m
+c 1c) = n))) |
170 | 169 | imp3a 420 |
. . . . . . . . . . 11
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ ((a ∈ (m
+c 1c) ∧
a ∈
n) → (m +c 1c) =
n)) |
171 | 96, 170 | syl5bi 208 |
. . . . . . . . . 10
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ (a ∈ ((m
+c 1c) ∩ n) → (m
+c 1c) = n)) |
172 | 171 | exlimdv 1636 |
. . . . . . . . 9
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ (∃a a ∈ ((m
+c 1c) ∩ n) → (m
+c 1c) = n)) |
173 | 95, 172 | syl5bi 208 |
. . . . . . . 8
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ (¬ ((m +c
1c) ∩ n) = ∅ → (m
+c 1c) = n)) |
174 | 173 | orrd 367 |
. . . . . . 7
⊢ (((m ∈ Nn ∧ n ∈ Nn ) ∧ ∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q))
→ (((m +c
1c) ∩ n) = ∅ ∨ (m +c 1c) =
n)) |
175 | 174 | exp31 587 |
. . . . . 6
⊢ (m ∈ Nn → (n ∈ Nn → (∀q ∈ Nn ((m ∩ q) =
∅ ∨
m = q)
→ (((m +c
1c) ∩ n) = ∅ ∨ (m +c 1c) =
n)))) |
176 | 175 | com23 72 |
. . . . 5
⊢ (m ∈ Nn → (∀q ∈ Nn ((m ∩
q) = ∅
∨ m =
q) → (n ∈ Nn → (((m
+c 1c) ∩ n) = ∅ ∨ (m
+c 1c) = n)))) |
177 | 176 | ralrimdv 2704 |
. . . 4
⊢ (m ∈ Nn → (∀q ∈ Nn ((m ∩
q) = ∅
∨ m =
q) → ∀n ∈ Nn (((m +c 1c) ∩
n) = ∅
∨ (m
+c 1c) = n))) |
178 | 44, 59, 70, 75, 80, 94, 177 | finds 4412 |
. . 3
⊢ (M ∈ Nn → ∀n ∈ Nn ((M ∩
n) = ∅
∨ M =
n)) |
179 | | ineq2 3452 |
. . . . . 6
⊢ (n = N →
(M ∩ n) = (M ∩
N)) |
180 | 179 | eqeq1d 2361 |
. . . . 5
⊢ (n = N →
((M ∩ n) = ∅ ↔
(M ∩ N) = ∅)) |
181 | | eqeq2 2362 |
. . . . 5
⊢ (n = N →
(M = n
↔ M = N)) |
182 | 180, 181 | orbi12d 690 |
. . . 4
⊢ (n = N →
(((M ∩ n) = ∅ ∨ M = n) ↔ ((M
∩ N) = ∅ ∨ M = N))) |
183 | 182 | rspccv 2953 |
. . 3
⊢ (∀n ∈ Nn ((M ∩ n) =
∅ ∨
M = n)
→ (N ∈ Nn → ((M ∩ N) =
∅ ∨
M = N))) |
184 | 178, 183 | syl 15 |
. 2
⊢ (M ∈ Nn → (N ∈ Nn → ((M ∩ N) =
∅ ∨
M = N))) |
185 | 184 | imp 418 |
1
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → ((M
∩ N) = ∅ ∨ M = N)) |