Proof of Theorem ceqsalt
Step | Hyp | Ref
| Expression |
1 | | elisset 2870 |
. . . 4
⊢ (A ∈ V → ∃x x = A) |
2 | 1 | 3ad2ant3 978 |
. . 3
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
∃x
x = A) |
3 | | bi1 178 |
. . . . . . 7
⊢ ((φ ↔ ψ) → (φ → ψ)) |
4 | 3 | imim3i 55 |
. . . . . 6
⊢ ((x = A →
(φ ↔ ψ)) → ((x = A →
φ) → (x = A →
ψ))) |
5 | 4 | al2imi 1561 |
. . . . 5
⊢ (∀x(x = A →
(φ ↔ ψ)) → (∀x(x = A →
φ) → ∀x(x = A →
ψ))) |
6 | 5 | 3ad2ant2 977 |
. . . 4
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(∀x(x = A → φ)
→ ∀x(x = A → ψ))) |
7 | | 19.23t 1800 |
. . . . 5
⊢ (Ⅎxψ →
(∀x(x = A → ψ)
↔ (∃x x = A → ψ))) |
8 | 7 | 3ad2ant1 976 |
. . . 4
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(∀x(x = A → ψ)
↔ (∃x x = A → ψ))) |
9 | 6, 8 | sylibd 205 |
. . 3
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(∀x(x = A → φ)
→ (∃x x = A → ψ))) |
10 | 2, 9 | mpid 37 |
. 2
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(∀x(x = A → φ)
→ ψ)) |
11 | | bi2 189 |
. . . . . . 7
⊢ ((φ ↔ ψ) → (ψ → φ)) |
12 | 11 | imim2i 13 |
. . . . . 6
⊢ ((x = A →
(φ ↔ ψ)) → (x = A →
(ψ → φ))) |
13 | 12 | com23 72 |
. . . . 5
⊢ ((x = A →
(φ ↔ ψ)) → (ψ → (x = A →
φ))) |
14 | 13 | alimi 1559 |
. . . 4
⊢ (∀x(x = A →
(φ ↔ ψ)) → ∀x(ψ → (x = A →
φ))) |
15 | 14 | 3ad2ant2 977 |
. . 3
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
∀x(ψ →
(x = A
→ φ))) |
16 | | 19.21t 1795 |
. . . 4
⊢ (Ⅎxψ →
(∀x(ψ →
(x = A
→ φ)) ↔ (ψ → ∀x(x = A →
φ)))) |
17 | 16 | 3ad2ant1 976 |
. . 3
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(∀x(ψ →
(x = A
→ φ)) ↔ (ψ → ∀x(x = A →
φ)))) |
18 | 15, 17 | mpbid 201 |
. 2
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(ψ → ∀x(x = A →
φ))) |
19 | 10, 18 | impbid 183 |
1
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ
↔ ψ)) ∧ A ∈ V) →
(∀x(x = A → φ)
↔ ψ)) |