New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpjaod | GIF version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (φ → (ψ → χ)) |
jaod.2 | ⊢ (φ → (θ → χ)) |
jaod.3 | ⊢ (φ → (ψ ∨ θ)) |
Ref | Expression |
---|---|
mpjaod | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 ⊢ (φ → (ψ ∨ θ)) | |
2 | jaod.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
3 | jaod.2 | . . 3 ⊢ (φ → (θ → χ)) | |
4 | 2, 3 | jaod 369 | . 2 ⊢ (φ → ((ψ ∨ θ) → χ)) |
5 | 1, 4 | mpd 14 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: ecase2d 906 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |