NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpjaod GIF version

Theorem mpjaod 370
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
jaod.1 (φ → (ψχ))
jaod.2 (φ → (θχ))
jaod.3 (φ → (ψ θ))
Assertion
Ref Expression
mpjaod (φχ)

Proof of Theorem mpjaod
StepHypRef Expression
1 jaod.3 . 2 (φ → (ψ θ))
2 jaod.1 . . 3 (φ → (ψχ))
3 jaod.2 . . 3 (φ → (θχ))
42, 3jaod 369 . 2 (φ → ((ψ θ) → χ))
51, 4mpd 14 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  ecase2d  906  fnfreclem3  6319
  Copyright terms: Public domain W3C validator