NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orel1 GIF version

Theorem orel1 371
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
orel1 φ → ((φ ψ) → ψ))

Proof of Theorem orel1
StepHypRef Expression
1 pm2.53 362 . 2 ((φ ψ) → (¬ φψ))
21com12 27 1 φ → ((φ ψ) → ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  pm2.25  393  biorf  394  euor2  2272  nndisjeq  4430  nnceleq  4431  sfinltfin  4536  sfin111  4537  phialllem1  4617  xpcan  5058  funun  5147  enprmaplem3  6079
  Copyright terms: Public domain W3C validator