New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orel1 | GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ φ → ((φ ∨ ψ) → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 362 | . 2 ⊢ ((φ ∨ ψ) → (¬ φ → ψ)) | |
2 | 1 | com12 27 | 1 ⊢ (¬ φ → ((φ ∨ ψ) → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm2.25 393 biorf 394 euor2 2272 nndisjeq 4430 nnceleq 4431 sfinltfin 4536 sfin111 4537 phialllem1 4617 xpcan 5058 funun 5147 enprmaplem3 6079 |
Copyright terms: Public domain | W3C validator |