![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > orel1 | GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ φ → ((φ ∨ ψ) → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 362 | . 2 ⊢ ((φ ∨ ψ) → (¬ φ → ψ)) | |
2 | 1 | com12 27 | 1 ⊢ (¬ φ → ((φ ∨ ψ) → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm2.25 393 biorf 394 euor2 2272 nndisjeq 4429 nnceleq 4430 sfinltfin 4535 sfin111 4536 phialllem1 4616 xpcan 5057 funun 5146 enprmaplem3 6078 |
Copyright terms: Public domain | W3C validator |