New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (φ → (ψ → χ)) |
jaod.2 | ⊢ (φ → (θ → χ)) |
Ref | Expression |
---|---|
jaod | ⊢ (φ → ((ψ ∨ θ) → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (φ → (ψ → χ)) | |
2 | 1 | com12 27 | . . 3 ⊢ (ψ → (φ → χ)) |
3 | jaod.2 | . . . 4 ⊢ (φ → (θ → χ)) | |
4 | 3 | com12 27 | . . 3 ⊢ (θ → (φ → χ)) |
5 | 2, 4 | jaoi 368 | . 2 ⊢ ((ψ ∨ θ) → (φ → χ)) |
6 | 5 | com12 27 | 1 ⊢ (φ → ((ψ ∨ θ) → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: mpjaod 370 orel2 372 pm2.621 397 jaao 495 jaodan 760 pm2.63 763 ecase2d 906 ecase3d 909 dedlema 920 dedlemb 921 cad0 1400 psssstr 3375 opkth1g 4130 lenltfin 4469 ssfin 4470 evenodddisj 4516 vfinspss 4551 vinf 4555 fununi 5160 weds 5938 enprmaplem3 6078 leconnnc 6218 addceq0 6219 nclenn 6249 muc0or 6252 ncslesuc 6267 nnc3n3p1 6278 nchoicelem6 6294 dmfrec 6316 fnfreclem2 6318 |
Copyright terms: Public domain | W3C validator |