New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (φ → (ψ → χ)) |
jaod.2 | ⊢ (φ → (θ → χ)) |
Ref | Expression |
---|---|
jaod | ⊢ (φ → ((ψ ∨ θ) → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (φ → (ψ → χ)) | |
2 | 1 | com12 27 | . . 3 ⊢ (ψ → (φ → χ)) |
3 | jaod.2 | . . . 4 ⊢ (φ → (θ → χ)) | |
4 | 3 | com12 27 | . . 3 ⊢ (θ → (φ → χ)) |
5 | 2, 4 | jaoi 368 | . 2 ⊢ ((ψ ∨ θ) → (φ → χ)) |
6 | 5 | com12 27 | 1 ⊢ (φ → ((ψ ∨ θ) → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: mpjaod 370 orel2 372 pm2.621 397 jaao 495 jaodan 760 pm2.63 763 ecase2d 906 ecase3d 909 dedlema 920 dedlemb 921 cad0 1400 psssstr 3376 opkth1g 4131 lenltfin 4470 ssfin 4471 evenodddisj 4517 vfinspss 4552 vinf 4556 fununi 5161 weds 5939 enprmaplem3 6079 leconnnc 6219 addceq0 6220 nclenn 6250 muc0or 6253 ncslesuc 6268 nnc3n3p1 6279 nchoicelem6 6295 dmfrec 6317 fnfreclem2 6319 |
Copyright terms: Public domain | W3C validator |