| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ecase2d | GIF version | ||
| Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Dec-2012.) |
| Ref | Expression |
|---|---|
| ecase2d.1 | ⊢ (φ → ψ) |
| ecase2d.2 | ⊢ (φ → ¬ (ψ ∧ χ)) |
| ecase2d.3 | ⊢ (φ → ¬ (ψ ∧ θ)) |
| ecase2d.4 | ⊢ (φ → (τ ∨ (χ ∨ θ))) |
| Ref | Expression |
|---|---|
| ecase2d | ⊢ (φ → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (φ → (τ → τ)) | |
| 2 | ecase2d.1 | . . . 4 ⊢ (φ → ψ) | |
| 3 | ecase2d.2 | . . . . 5 ⊢ (φ → ¬ (ψ ∧ χ)) | |
| 4 | 3 | pm2.21d 98 | . . . 4 ⊢ (φ → ((ψ ∧ χ) → τ)) |
| 5 | 2, 4 | mpand 656 | . . 3 ⊢ (φ → (χ → τ)) |
| 6 | ecase2d.3 | . . . . 5 ⊢ (φ → ¬ (ψ ∧ θ)) | |
| 7 | 6 | pm2.21d 98 | . . . 4 ⊢ (φ → ((ψ ∧ θ) → τ)) |
| 8 | 2, 7 | mpand 656 | . . 3 ⊢ (φ → (θ → τ)) |
| 9 | 5, 8 | jaod 369 | . 2 ⊢ (φ → ((χ ∨ θ) → τ)) |
| 10 | ecase2d.4 | . 2 ⊢ (φ → (τ ∨ (χ ∨ θ))) | |
| 11 | 1, 9, 10 | mpjaod 370 | 1 ⊢ (φ → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |