Step | Hyp | Ref
| Expression |
1 | | 0cex 4392 |
. . . . 5
⊢
0c ∈
V |
2 | | fnfreclem2.3 |
. . . . 5
⊢ (φ → I ∈ dom G) |
3 | | opexg 4587 |
. . . . 5
⊢
((0c ∈ V ∧ I ∈ dom G) →
〈0c, I〉 ∈ V) |
4 | 1, 2, 3 | sylancr 644 |
. . . 4
⊢ (φ → 〈0c, I〉 ∈ V) |
5 | | elsnc2g 3761 |
. . . 4
⊢ (〈0c, I〉 ∈ V → (〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} ↔ 〈(X
+c 1c), Y〉 = 〈0c, I〉)) |
6 | 4, 5 | syl 15 |
. . 3
⊢ (φ → (〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} ↔ 〈(X
+c 1c), Y〉 = 〈0c, I〉)) |
7 | | opth 4602 |
. . . . 5
⊢ (〈(X
+c 1c), Y〉 = 〈0c, I〉 ↔
((X +c
1c) = 0c ∧
Y = I)) |
8 | 7 | simplbi 446 |
. . . 4
⊢ (〈(X
+c 1c), Y〉 = 〈0c, I〉 →
(X +c
1c) = 0c) |
9 | | 0cnsuc 4401 |
. . . . . . 7
⊢ (X +c 1c) ≠
0c |
10 | | df-ne 2518 |
. . . . . . 7
⊢ ((X +c 1c) ≠
0c ↔ ¬ (X
+c 1c) =
0c) |
11 | 9, 10 | mpbi 199 |
. . . . . 6
⊢ ¬ (X +c 1c) =
0c |
12 | 11 | pm2.21i 123 |
. . . . 5
⊢ ((X +c 1c) =
0c → ∃z(XFz ∧ zGY)) |
13 | 12 | a1i 10 |
. . . 4
⊢ (φ → ((X +c 1c) =
0c → ∃z(XFz ∧ zGY))) |
14 | 8, 13 | syl5 28 |
. . 3
⊢ (φ → (〈(X
+c 1c), Y〉 = 〈0c, I〉 → ∃z(XFz ∧ zGY))) |
15 | 6, 14 | sylbid 206 |
. 2
⊢ (φ → (〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} → ∃z(XFz ∧ zGY))) |
16 | | vex 2862 |
. . . . . . 7
⊢ a ∈
V |
17 | | opeqex 4621 |
. . . . . . 7
⊢ (a ∈ V → ∃t∃z a = 〈t, z〉) |
18 | 16, 17 | ax-mp 5 |
. . . . . 6
⊢ ∃t∃z a = 〈t, z〉 |
19 | | excom 1741 |
. . . . . 6
⊢ (∃t∃z a = 〈t, z〉 ↔ ∃z∃t a = 〈t, z〉) |
20 | 18, 19 | mpbi 199 |
. . . . 5
⊢ ∃z∃t a = 〈t, z〉 |
21 | | eleq1 2413 |
. . . . . . . . . . . 12
⊢ (a = 〈t, z〉 → (a
∈ F
↔ 〈t, z〉 ∈ F)) |
22 | | df-br 4640 |
. . . . . . . . . . . 12
⊢ (tFz ↔ 〈t, z〉 ∈ F) |
23 | 21, 22 | syl6bbr 254 |
. . . . . . . . . . 11
⊢ (a = 〈t, z〉 → (a
∈ F
↔ tFz)) |
24 | 23 | anbi2d 684 |
. . . . . . . . . 10
⊢ (a = 〈t, z〉 → ((φ ∧ a ∈ F) ↔ (φ
∧ tFz))) |
25 | | breq1 4642 |
. . . . . . . . . . 11
⊢ (a = 〈t, z〉 → (a
PProd ((w
∈ V ↦
(w +c
1c)), G)〈(X
+c 1c), Y〉 ↔ 〈t, z〉 PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉)) |
26 | | qrpprod 5836 |
. . . . . . . . . . . 12
⊢ (〈t, z〉 PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉 ↔
(t(w
∈ V ↦
(w +c
1c))(X
+c 1c) ∧
zGY)) |
27 | | vex 2862 |
. . . . . . . . . . . . . . . 16
⊢ t ∈
V |
28 | | addceq1 4383 |
. . . . . . . . . . . . . . . . 17
⊢ (w = t →
(w +c
1c) = (t
+c 1c)) |
29 | | eqid 2353 |
. . . . . . . . . . . . . . . . 17
⊢ (w ∈ V ↦ (w
+c 1c)) = (w ∈ V ↦ (w
+c 1c)) |
30 | | 1cex 4142 |
. . . . . . . . . . . . . . . . . 18
⊢
1c ∈
V |
31 | 27, 30 | addcex 4394 |
. . . . . . . . . . . . . . . . 17
⊢ (t +c 1c) ∈ V |
32 | 28, 29, 31 | fvmpt 5700 |
. . . . . . . . . . . . . . . 16
⊢ (t ∈ V →
((w ∈ V
↦ (w
+c 1c)) ‘t) = (t
+c 1c)) |
33 | 27, 32 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((w ∈ V ↦ (w
+c 1c)) ‘t) = (t
+c 1c) |
34 | 33 | eqeq1i 2360 |
. . . . . . . . . . . . . 14
⊢ (((w ∈ V ↦ (w
+c 1c)) ‘t) = (X
+c 1c) ↔ (t +c 1c) =
(X +c
1c)) |
35 | 29 | fnmpt 5689 |
. . . . . . . . . . . . . . . 16
⊢ (∀w ∈ V (w
+c 1c) ∈
V → (w ∈ V ↦ (w +c 1c)) Fn
V) |
36 | | addcexg 4393 |
. . . . . . . . . . . . . . . . 17
⊢ ((w ∈ V ∧ 1c ∈ V) → (w
+c 1c) ∈
V) |
37 | 30, 36 | mpan2 652 |
. . . . . . . . . . . . . . . 16
⊢ (w ∈ V →
(w +c
1c) ∈ V) |
38 | 35, 37 | mprg 2683 |
. . . . . . . . . . . . . . 15
⊢ (w ∈ V ↦ (w
+c 1c)) Fn V |
39 | | fnbrfvb 5358 |
. . . . . . . . . . . . . . 15
⊢ (((w ∈ V ↦ (w
+c 1c)) Fn V ∧ t ∈ V) → (((w ∈ V ↦ (w
+c 1c)) ‘t) = (X
+c 1c) ↔ t(w ∈ V ↦ (w +c
1c))(X
+c 1c))) |
40 | 38, 27, 39 | mp2an 653 |
. . . . . . . . . . . . . 14
⊢ (((w ∈ V ↦ (w
+c 1c)) ‘t) = (X
+c 1c) ↔ t(w ∈ V ↦ (w +c
1c))(X
+c 1c)) |
41 | 34, 40 | bitr3i 242 |
. . . . . . . . . . . . 13
⊢ ((t +c 1c) =
(X +c
1c) ↔ t(w ∈ V ↦ (w
+c 1c))(X +c
1c)) |
42 | 41 | anbi1i 676 |
. . . . . . . . . . . 12
⊢ (((t +c 1c) =
(X +c
1c) ∧ zGY) ↔ (t(w ∈ V ↦ (w +c
1c))(X
+c 1c) ∧
zGY)) |
43 | 26, 42 | bitr4i 243 |
. . . . . . . . . . 11
⊢ (〈t, z〉 PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉 ↔
((t +c
1c) = (X
+c 1c) ∧
zGY)) |
44 | 25, 43 | syl6bb 252 |
. . . . . . . . . 10
⊢ (a = 〈t, z〉 → (a
PProd ((w
∈ V ↦
(w +c
1c)), G)〈(X
+c 1c), Y〉 ↔
((t +c
1c) = (X
+c 1c) ∧
zGY))) |
45 | 24, 44 | anbi12d 691 |
. . . . . . . . 9
⊢ (a = 〈t, z〉 → (((φ ∧ a ∈ F) ∧ a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉)
↔ ((φ ∧ tFz) ∧ ((t
+c 1c) = (X +c 1c) ∧ zGY)))) |
46 | | breldm 4911 |
. . . . . . . . . . . . . . 15
⊢ (tFz → t ∈ dom F) |
47 | 46 | adantl 452 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧ tFz) → t
∈ dom F) |
48 | | fnfreclem2.1 |
. . . . . . . . . . . . . . . 16
⊢ F = FRec (G, I) |
49 | | fnfreclem2.2 |
. . . . . . . . . . . . . . . 16
⊢ (φ → G ∈ V) |
50 | | fnfreclem2.4 |
. . . . . . . . . . . . . . . 16
⊢ (φ → ran G ⊆ dom G) |
51 | 48, 49, 2, 50 | dmfrec 6316 |
. . . . . . . . . . . . . . 15
⊢ (φ → dom F = Nn
) |
52 | 51 | adantr 451 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧ tFz) → dom F
= Nn ) |
53 | 47, 52 | eleqtrd 2429 |
. . . . . . . . . . . . 13
⊢ ((φ ∧ tFz) → t
∈ Nn
) |
54 | | fnfreclem3.5 |
. . . . . . . . . . . . . 14
⊢ (φ → X ∈ Nn ) |
55 | 54 | adantr 451 |
. . . . . . . . . . . . 13
⊢ ((φ ∧ tFz) → X
∈ Nn
) |
56 | | peano4 4557 |
. . . . . . . . . . . . . 14
⊢ ((t ∈ Nn ∧ X ∈ Nn ∧ (t +c 1c) =
(X +c
1c)) → t = X) |
57 | 56 | 3expia 1153 |
. . . . . . . . . . . . 13
⊢ ((t ∈ Nn ∧ X ∈ Nn ) → ((t
+c 1c) = (X +c 1c) →
t = X)) |
58 | 53, 55, 57 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ ((φ ∧ tFz) → ((t
+c 1c) = (X +c 1c) →
t = X)) |
59 | | breq1 4642 |
. . . . . . . . . . . . . 14
⊢ (t = X →
(tFz ↔
XFz)) |
60 | 59 | biimpcd 215 |
. . . . . . . . . . . . 13
⊢ (tFz → (t =
X → XFz)) |
61 | 60 | adantl 452 |
. . . . . . . . . . . 12
⊢ ((φ ∧ tFz) → (t =
X → XFz)) |
62 | 58, 61 | syld 40 |
. . . . . . . . . . 11
⊢ ((φ ∧ tFz) → ((t
+c 1c) = (X +c 1c) →
XFz)) |
63 | 62 | anim1d 547 |
. . . . . . . . . 10
⊢ ((φ ∧ tFz) → (((t
+c 1c) = (X +c 1c) ∧ zGY) →
(XFz ∧ zGY))) |
64 | 63 | imp 418 |
. . . . . . . . 9
⊢ (((φ ∧ tFz) ∧ ((t +c 1c) =
(X +c
1c) ∧ zGY)) → (XFz ∧ zGY)) |
65 | 45, 64 | syl6bi 219 |
. . . . . . . 8
⊢ (a = 〈t, z〉 → (((φ ∧ a ∈ F) ∧ a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉)
→ (XFz ∧ zGY))) |
66 | 65 | com12 27 |
. . . . . . 7
⊢ (((φ ∧ a ∈ F) ∧ a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉)
→ (a = 〈t, z〉 →
(XFz ∧ zGY))) |
67 | 66 | exlimdv 1636 |
. . . . . 6
⊢ (((φ ∧ a ∈ F) ∧ a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉)
→ (∃t a = 〈t, z〉 →
(XFz ∧ zGY))) |
68 | 67 | eximdv 1622 |
. . . . 5
⊢ (((φ ∧ a ∈ F) ∧ a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉)
→ (∃z∃t a = 〈t, z〉 → ∃z(XFz ∧ zGY))) |
69 | 20, 68 | mpi 16 |
. . . 4
⊢ (((φ ∧ a ∈ F) ∧ a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉)
→ ∃z(XFz ∧ zGY)) |
70 | 69 | ex 423 |
. . 3
⊢ ((φ ∧ a ∈ F) → (a
PProd ((w
∈ V ↦
(w +c
1c)), G)〈(X
+c 1c), Y〉 → ∃z(XFz ∧ zGY))) |
71 | 70 | rexlimdva 2738 |
. 2
⊢ (φ → (∃a ∈ F a PProd ((w ∈ V ↦ (w
+c 1c)), G)〈(X +c 1c),
Y〉 →
∃z(XFz ∧ zGY))) |
72 | | fnfreclem3.6 |
. . 3
⊢ (φ → (X +c 1c)FY) |
73 | | df-br 4640 |
. . . 4
⊢ ((X +c 1c)FY ↔ 〈(X
+c 1c), Y〉 ∈ F) |
74 | | snex 4111 |
. . . . 5
⊢ {〈0c, I〉} ∈ V |
75 | | csucex 6259 |
. . . . . 6
⊢ (w ∈ V ↦ (w
+c 1c)) ∈
V |
76 | | pprodexg 5837 |
. . . . . 6
⊢ (((w ∈ V ↦ (w
+c 1c)) ∈
V ∧ G
∈ V)
→ PProd ((w ∈ V ↦ (w
+c 1c)), G) ∈
V) |
77 | 75, 49, 76 | sylancr 644 |
. . . . 5
⊢ (φ → PProd
((w ∈ V
↦ (w
+c 1c)), G) ∈
V) |
78 | | df-frec 6310 |
. . . . . . 7
⊢ FRec (G, I) = Clos1 ({〈0c, I〉}, PProd ((w ∈ V ↦ (w +c 1c)),
G)) |
79 | 48, 78 | eqtri 2373 |
. . . . . 6
⊢ F = Clos1 ({〈0c, I〉}, PProd ((w ∈ V ↦ (w +c 1c)),
G)) |
80 | 79 | clos1basesucg 5884 |
. . . . 5
⊢ (({〈0c, I〉} ∈ V ∧ PProd ((w ∈ V ↦ (w +c 1c)),
G) ∈ V)
→ (〈(X +c 1c),
Y〉 ∈ F ↔
(〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} ∨ ∃a ∈ F a PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉))) |
81 | 74, 77, 80 | sylancr 644 |
. . . 4
⊢ (φ → (〈(X
+c 1c), Y〉 ∈ F ↔
(〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} ∨ ∃a ∈ F a PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉))) |
82 | 73, 81 | syl5bb 248 |
. . 3
⊢ (φ → ((X +c 1c)FY ↔ (〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} ∨ ∃a ∈ F a PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉))) |
83 | 72, 82 | mpbid 201 |
. 2
⊢ (φ → (〈(X
+c 1c), Y〉 ∈ {〈0c, I〉} ∨ ∃a ∈ F a PProd ((w ∈ V ↦ (w +c 1c)),
G)〈(X
+c 1c), Y〉)) |
84 | 15, 71, 83 | mpjaod 370 |
1
⊢ (φ → ∃z(XFz ∧ zGY)) |