| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpjaodan | GIF version | ||
| Description: Eliminate a disjunction in a deduction. A translation of natural deduction rule ∨ E ( ∨ elimination), see natded in set.mm. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((φ ∧ ψ) → χ) |
| jaodan.2 | ⊢ ((φ ∧ θ) → χ) |
| jaodan.3 | ⊢ (φ → (ψ ∨ θ)) |
| Ref | Expression |
|---|---|
| mpjaodan | ⊢ (φ → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.3 | . 2 ⊢ (φ → (ψ ∨ θ)) | |
| 2 | jaodan.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
| 3 | jaodan.2 | . . 3 ⊢ ((φ ∧ θ) → χ) | |
| 4 | 2, 3 | jaodan 760 | . 2 ⊢ ((φ ∧ (ψ ∨ θ)) → χ) |
| 5 | 1, 4 | mpdan 649 | 1 ⊢ (φ → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |