NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpjaodan GIF version

Theorem mpjaodan 761
Description: Eliminate a disjunction in a deduction. A translation of natural deduction rule E ( elimination), see natded in set.mm. (Contributed by Mario Carneiro, 29-May-2016.)
Hypotheses
Ref Expression
jaodan.1 ((φ ψ) → χ)
jaodan.2 ((φ θ) → χ)
jaodan.3 (φ → (ψ θ))
Assertion
Ref Expression
mpjaodan (φχ)

Proof of Theorem mpjaodan
StepHypRef Expression
1 jaodan.3 . 2 (φ → (ψ θ))
2 jaodan.1 . . 3 ((φ ψ) → χ)
3 jaodan.2 . . 3 ((φ θ) → χ)
42, 3jaodan 760 . 2 ((φ (ψ θ)) → χ)
51, 4mpdan 649 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator