NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jaodan GIF version

Theorem jaodan 760
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
jaodan.1 ((φ ψ) → χ)
jaodan.2 ((φ θ) → χ)
Assertion
Ref Expression
jaodan ((φ (ψ θ)) → χ)

Proof of Theorem jaodan
StepHypRef Expression
1 jaodan.1 . . . 4 ((φ ψ) → χ)
21ex 423 . . 3 (φ → (ψχ))
3 jaodan.2 . . . 4 ((φ θ) → χ)
43ex 423 . . 3 (φ → (θχ))
52, 4jaod 369 . 2 (φ → ((ψ θ) → χ))
65imp 418 1 ((φ (ψ θ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  mpjaodan  761  andi  837  ccase  912
  Copyright terms: Public domain W3C validator