| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > jaodan | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 | ⊢ ((φ ∧ ψ) → χ) |
| jaodan.2 | ⊢ ((φ ∧ θ) → χ) |
| Ref | Expression |
|---|---|
| jaodan | ⊢ ((φ ∧ (ψ ∨ θ)) → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
| 2 | 1 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
| 3 | jaodan.2 | . . . 4 ⊢ ((φ ∧ θ) → χ) | |
| 4 | 3 | ex 423 | . . 3 ⊢ (φ → (θ → χ)) |
| 5 | 2, 4 | jaod 369 | . 2 ⊢ (φ → ((ψ ∨ θ) → χ)) |
| 6 | 5 | imp 418 | 1 ⊢ ((φ ∧ (ψ ∨ θ)) → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: mpjaodan 761 andi 837 ccase 912 |
| Copyright terms: Public domain | W3C validator |