NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpdan GIF version

Theorem mpdan 649
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
Hypotheses
Ref Expression
mpdan.1 (φψ)
mpdan.2 ((φ ψ) → χ)
Assertion
Ref Expression
mpdan (φχ)

Proof of Theorem mpdan
StepHypRef Expression
1 id 19 . 2 (φφ)
2 mpdan.1 . 2 (φψ)
3 mpdan.2 . 2 ((φ ψ) → χ)
41, 2, 3syl2anc 642 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  mpan2  652  mpjaodan  761  mpd3an3  1278  eueq2  3011  csbiegf  3177  difsnb  3851  ltfinp1  4463  vfinncsp  4555  addccan2  4560  fnressn  5439  f1oiso2  5501  fvdomfn  5869  fvranfn  5870  qsdisj  5996  enadj  6061  enmap2lem3  6066  enmap1lem3  6072  nclecid  6198  le0nc  6201  nnltp1c  6263  nmembers1  6272
  Copyright terms: Public domain W3C validator