New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpdan | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
mpdan.1 | ⊢ (φ → ψ) |
mpdan.2 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
mpdan | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (φ → φ) | |
2 | mpdan.1 | . 2 ⊢ (φ → ψ) | |
3 | mpdan.2 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
4 | 1, 2, 3 | syl2anc 642 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpan2 652 mpjaodan 761 mpd3an3 1278 eueq2 3011 csbiegf 3177 difsnb 3851 ltfinp1 4463 vfinncsp 4555 addccan2 4560 fnressn 5439 f1oiso2 5501 fvdomfn 5869 fvranfn 5870 qsdisj 5996 enadj 6061 enmap2lem3 6066 enmap1lem3 6072 nclecid 6198 le0nc 6201 nnltp1c 6263 nmembers1 6272 |
Copyright terms: Public domain | W3C validator |