NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.77 GIF version

Theorem pm4.77 762
Description: Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.77 (((ψφ) (χφ)) ↔ ((ψ χ) → φ))

Proof of Theorem pm4.77
StepHypRef Expression
1 jaob 758 . 2 (((ψ χ) → φ) ↔ ((ψφ) (χφ)))
21bicomi 193 1 (((ψφ) (χφ)) ↔ ((ψ χ) → φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator