| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpto2 | GIF version | ||
| Description: Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or ⊻. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 12-Nov-2017.) |
| Ref | Expression |
|---|---|
| mpto2.1 | ⊢ φ |
| mpto2.2 | ⊢ (φ ⊻ ψ) |
| Ref | Expression |
|---|---|
| mpto2 | ⊢ ¬ ψ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpto2.1 | . 2 ⊢ φ | |
| 2 | mpto2.2 | . . . 4 ⊢ (φ ⊻ ψ) | |
| 3 | df-xor 1305 | . . . 4 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) | |
| 4 | 2, 3 | mpbi 199 | . . 3 ⊢ ¬ (φ ↔ ψ) |
| 5 | xor3 346 | . . 3 ⊢ (¬ (φ ↔ ψ) ↔ (φ ↔ ¬ ψ)) | |
| 6 | 4, 5 | mpbi 199 | . 2 ⊢ (φ ↔ ¬ ψ) |
| 7 | 1, 6 | mpbi 199 | 1 ⊢ ¬ ψ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-xor 1305 |
| This theorem is referenced by: mtp-xor 1536 |
| Copyright terms: Public domain | W3C validator |