NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpto2OLD GIF version

Theorem mpto2OLD 1535
Description: Obsolete version of mpto2 1534 as of 12-Nov-2017. (Contributed by David A. Wheeler, 3-Jul-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mpto2OLD.1 φ
mpto2OLD.2 (φψ)
Assertion
Ref Expression
mpto2OLD ¬ ψ

Proof of Theorem mpto2OLD
StepHypRef Expression
1 mpto2OLD.1 . 2 φ
2 mpto2OLD.2 . . . . 5 (φψ)
3 df-xor 1305 . . . . 5 ((φψ) ↔ ¬ (φψ))
42, 3mpbi 199 . . . 4 ¬ (φψ)
5 nbbn 347 . . . 4 ((¬ φψ) ↔ ¬ (φψ))
64, 5mpbir 200 . . 3 φψ)
76con1bii 321 . 2 ψφ)
81, 7mpbir 200 1 ¬ ψ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator