New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpto2OLD | GIF version |
Description: Obsolete version of mpto2 1534 as of 12-Nov-2017. (Contributed by David A. Wheeler, 3-Jul-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mpto2OLD.1 | ⊢ φ |
mpto2OLD.2 | ⊢ (φ ⊻ ψ) |
Ref | Expression |
---|---|
mpto2OLD | ⊢ ¬ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpto2OLD.1 | . 2 ⊢ φ | |
2 | mpto2OLD.2 | . . . . 5 ⊢ (φ ⊻ ψ) | |
3 | df-xor 1305 | . . . . 5 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) | |
4 | 2, 3 | mpbi 199 | . . . 4 ⊢ ¬ (φ ↔ ψ) |
5 | nbbn 347 | . . . 4 ⊢ ((¬ φ ↔ ψ) ↔ ¬ (φ ↔ ψ)) | |
6 | 4, 5 | mpbir 200 | . . 3 ⊢ (¬ φ ↔ ψ) |
7 | 6 | con1bii 321 | . 2 ⊢ (¬ ψ ↔ φ) |
8 | 1, 7 | mpbir 200 | 1 ⊢ ¬ ψ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |