New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xor3 | GIF version |
Description: Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.) |
Ref | Expression |
---|---|
xor3 | ⊢ (¬ (φ ↔ ψ) ↔ (φ ↔ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 345 | . . 3 ⊢ ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ)) | |
2 | 1 | con2bii 322 | . 2 ⊢ ((φ ↔ ¬ ψ) ↔ ¬ (φ ↔ ψ)) |
3 | 2 | bicomi 193 | 1 ⊢ (¬ (φ ↔ ψ) ↔ (φ ↔ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: nbbn 347 pm5.15 859 nbi2 862 mpto2 1534 mtp-xorOLD 1537 |
Copyright terms: Public domain | W3C validator |