NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mt3d GIF version

Theorem mt3d 117
Description: Modus tollens deduction. (Contributed by NM, 26-Mar-1995.)
Hypotheses
Ref Expression
mt3d.1 (φ → ¬ χ)
mt3d.2 (φ → (¬ ψχ))
Assertion
Ref Expression
mt3d (φψ)

Proof of Theorem mt3d
StepHypRef Expression
1 mt3d.1 . 2 (φ → ¬ χ)
2 mt3d.2 . . 3 (φ → (¬ ψχ))
32con1d 116 . 2 (φ → (¬ χψ))
41, 3mpd 14 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt3i  118  nsyl2  119  ecase23d  1285  nnsucelr  4429  enprmaplem5  6081
  Copyright terms: Public domain W3C validator