New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ecase23d | GIF version |
Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
ecase23d.1 | ⊢ (φ → ¬ χ) |
ecase23d.2 | ⊢ (φ → ¬ θ) |
ecase23d.3 | ⊢ (φ → (ψ ∨ χ ∨ θ)) |
Ref | Expression |
---|---|
ecase23d | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecase23d.1 | . . 3 ⊢ (φ → ¬ χ) | |
2 | ecase23d.2 | . . 3 ⊢ (φ → ¬ θ) | |
3 | ioran 476 | . . 3 ⊢ (¬ (χ ∨ θ) ↔ (¬ χ ∧ ¬ θ)) | |
4 | 1, 2, 3 | sylanbrc 645 | . 2 ⊢ (φ → ¬ (χ ∨ θ)) |
5 | ecase23d.3 | . . . 4 ⊢ (φ → (ψ ∨ χ ∨ θ)) | |
6 | 3orass 937 | . . . 4 ⊢ ((ψ ∨ χ ∨ θ) ↔ (ψ ∨ (χ ∨ θ))) | |
7 | 5, 6 | sylib 188 | . . 3 ⊢ (φ → (ψ ∨ (χ ∨ θ))) |
8 | 7 | ord 366 | . 2 ⊢ (φ → (¬ ψ → (χ ∨ θ))) |
9 | 4, 8 | mt3d 117 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 |
This theorem is referenced by: tfinltfin 4502 |
Copyright terms: Public domain | W3C validator |