Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . 4
⊢ p ∈
V |
2 | 1 | elpw 3729 |
. . 3
⊢ (p ∈ ℘B ↔
p ⊆
B) |
3 | | ifeqor 3700 |
. . . . . . . . . . . . . 14
⊢ ( if(u ∈ p, x, y) = x ∨ if(u ∈ p, x, y) = y) |
4 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ x ∈
V |
5 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ y ∈
V |
6 | 4, 5 | ifex 3721 |
. . . . . . . . . . . . . . 15
⊢ if(u ∈ p, x, y) ∈
V |
7 | 6 | elpr 3752 |
. . . . . . . . . . . . . 14
⊢ ( if(u ∈ p, x, y) ∈ {x, y} ↔ (
if(u ∈
p, x,
y) = x
∨ if(u
∈ p,
x, y) =
y)) |
8 | 3, 7 | mpbir 200 |
. . . . . . . . . . . . 13
⊢ if(u ∈ p, x, y) ∈ {x, y} |
9 | | id 19 |
. . . . . . . . . . . . 13
⊢ (A = {x, y} → A =
{x, y}) |
10 | 8, 9 | syl5eleqr 2440 |
. . . . . . . . . . . 12
⊢ (A = {x, y} → if(u
∈ p,
x, y)
∈ A) |
11 | 10 | ralrimivw 2699 |
. . . . . . . . . . 11
⊢ (A = {x, y} → ∀u ∈ B if(u ∈ p, x, y) ∈ A) |
12 | | enprmaplem5.2 |
. . . . . . . . . . . 12
⊢ R = (u ∈ B ↦ if(u ∈ p, x, y)) |
13 | 12 | fmpt 5693 |
. . . . . . . . . . 11
⊢ (∀u ∈ B if(u ∈ p, x, y) ∈ A ↔ R:B–→A) |
14 | 11, 13 | sylib 188 |
. . . . . . . . . 10
⊢ (A = {x, y} → R:B–→A) |
15 | | prex 4113 |
. . . . . . . . . . . 12
⊢ {x, y} ∈ V |
16 | | eleq1 2413 |
. . . . . . . . . . . 12
⊢ (A = {x, y} → (A
∈ V ↔ {x, y} ∈ V)) |
17 | 15, 16 | mpbiri 224 |
. . . . . . . . . . 11
⊢ (A = {x, y} → A
∈ V) |
18 | | enprmaplem5.3 |
. . . . . . . . . . . 12
⊢ B ∈
V |
19 | 12, 18 | enprmaplem4 6080 |
. . . . . . . . . . . 12
⊢ R ∈
V |
20 | | elmapg 6013 |
. . . . . . . . . . . 12
⊢ ((A ∈ V ∧ B ∈ V ∧ R ∈ V) →
(R ∈
(A ↑m B) ↔ R:B–→A)) |
21 | 18, 19, 20 | mp3an23 1269 |
. . . . . . . . . . 11
⊢ (A ∈ V →
(R ∈
(A ↑m B) ↔ R:B–→A)) |
22 | 17, 21 | syl 15 |
. . . . . . . . . 10
⊢ (A = {x, y} → (R
∈ (A
↑m B) ↔
R:B–→A)) |
23 | 14, 22 | mpbird 223 |
. . . . . . . . 9
⊢ (A = {x, y} → R
∈ (A
↑m B)) |
24 | 23 | 3ad2ant2 977 |
. . . . . . . 8
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
R ∈
(A ↑m B)) |
25 | | cnveq 4887 |
. . . . . . . . . 10
⊢ (r = R →
◡r
= ◡R) |
26 | 25 | imaeq1d 4942 |
. . . . . . . . 9
⊢ (r = R →
(◡r
“ {x}) = (◡R
“ {x})) |
27 | | enprmaplem5.1 |
. . . . . . . . 9
⊢ W = (r ∈ (A
↑m B) ↦ (◡r
“ {x})) |
28 | 19 | cnvex 5103 |
. . . . . . . . . 10
⊢ ◡R ∈ V |
29 | | snex 4112 |
. . . . . . . . . 10
⊢ {x} ∈
V |
30 | 28, 29 | imaex 4748 |
. . . . . . . . 9
⊢ (◡R
“ {x}) ∈ V |
31 | 26, 27, 30 | fvmpt 5701 |
. . . . . . . 8
⊢ (R ∈ (A ↑m B) → (W
‘R) = (◡R
“ {x})) |
32 | 24, 31 | syl 15 |
. . . . . . 7
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(W ‘R) = (◡R
“ {x})) |
33 | | eliniseg 5021 |
. . . . . . . . 9
⊢ (z ∈ (◡R
“ {x}) ↔ zRx) |
34 | | breldm 4912 |
. . . . . . . . . . . . 13
⊢ (zRx → z ∈ dom R) |
35 | 12 | fnmpt 5690 |
. . . . . . . . . . . . . . 15
⊢ (∀u ∈ B if(u ∈ p, x, y) ∈ V →
R Fn B) |
36 | 6 | a1i 10 |
. . . . . . . . . . . . . . 15
⊢ (u ∈ B → if(u
∈ p,
x, y)
∈ V) |
37 | 35, 36 | mprg 2684 |
. . . . . . . . . . . . . 14
⊢ R Fn B |
38 | | fndm 5183 |
. . . . . . . . . . . . . 14
⊢ (R Fn B →
dom R = B) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom R = B |
40 | 34, 39 | syl6eleq 2443 |
. . . . . . . . . . . 12
⊢ (zRx → z ∈ B) |
41 | | fnbrfvb 5359 |
. . . . . . . . . . . . . . 15
⊢ ((R Fn B ∧ z ∈ B) →
((R ‘z) = x ↔
zRx)) |
42 | 37, 41 | mpan 651 |
. . . . . . . . . . . . . 14
⊢ (z ∈ B → ((R
‘z) = x ↔ zRx)) |
43 | 42 | biimprd 214 |
. . . . . . . . . . . . 13
⊢ (z ∈ B → (zRx → (R
‘z) = x)) |
44 | 43 | com12 27 |
. . . . . . . . . . . 12
⊢ (zRx → (z
∈ B
→ (R ‘z) = x)) |
45 | 40, 44 | jcai 522 |
. . . . . . . . . . 11
⊢ (zRx → (z
∈ B ∧ (R
‘z) = x)) |
46 | | eleq1 2413 |
. . . . . . . . . . . . . . . . 17
⊢ (u = z →
(u ∈
p ↔ z ∈ p)) |
47 | 46 | ifbid 3681 |
. . . . . . . . . . . . . . . 16
⊢ (u = z →
if(u ∈
p, x,
y) = if(z ∈ p, x, y)) |
48 | 4, 5 | ifex 3721 |
. . . . . . . . . . . . . . . 16
⊢ if(z ∈ p, x, y) ∈
V |
49 | 47, 12, 48 | fvmpt 5701 |
. . . . . . . . . . . . . . 15
⊢ (z ∈ B → (R
‘z) = if(z ∈ p, x, y)) |
50 | 49 | eqeq1d 2361 |
. . . . . . . . . . . . . 14
⊢ (z ∈ B → ((R
‘z) = x ↔ if(z
∈ p,
x, y) =
x)) |
51 | 50 | biimpd 198 |
. . . . . . . . . . . . 13
⊢ (z ∈ B → ((R
‘z) = x → if(z
∈ p,
x, y) =
x)) |
52 | 51 | imp 418 |
. . . . . . . . . . . 12
⊢ ((z ∈ B ∧ (R ‘z) =
x) → if(z ∈ p, x, y) = x) |
53 | | simpl1 958 |
. . . . . . . . . . . . . . 15
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ if(z ∈ p, x, y) = x) → x ≠
y) |
54 | | df-ne 2519 |
. . . . . . . . . . . . . . 15
⊢ (x ≠ y ↔
¬ x = y) |
55 | 53, 54 | sylib 188 |
. . . . . . . . . . . . . 14
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ if(z ∈ p, x, y) = x) → ¬ x = y) |
56 | | iffalse 3670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ z ∈ p → if(z
∈ p,
x, y) =
y) |
57 | 56 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ z ∈ p → (x =
if(z ∈
p, x,
y) ↔ x = y)) |
58 | 57 | biimpd 198 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ z ∈ p → (x =
if(z ∈
p, x,
y) → x = y)) |
59 | 58 | com12 27 |
. . . . . . . . . . . . . . . 16
⊢ (x = if(z ∈ p, x, y) →
(¬ z ∈ p →
x = y)) |
60 | 59 | eqcoms 2356 |
. . . . . . . . . . . . . . 15
⊢ ( if(z ∈ p, x, y) = x →
(¬ z ∈ p →
x = y)) |
61 | 60 | adantl 452 |
. . . . . . . . . . . . . 14
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ if(z ∈ p, x, y) = x) → (¬ z ∈ p → x =
y)) |
62 | 55, 61 | mt3d 117 |
. . . . . . . . . . . . 13
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ if(z ∈ p, x, y) = x) → z
∈ p) |
63 | 62 | ex 423 |
. . . . . . . . . . . 12
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) → (
if(z ∈
p, x,
y) = x
→ z ∈ p)) |
64 | 52, 63 | syl5 28 |
. . . . . . . . . . 11
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
((z ∈
B ∧
(R ‘z) = x) →
z ∈
p)) |
65 | 45, 64 | syl5 28 |
. . . . . . . . . 10
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(zRx →
z ∈
p)) |
66 | | ssel2 3269 |
. . . . . . . . . . . . . . 15
⊢ ((p ⊆ B ∧ z ∈ p) → z
∈ B) |
67 | 66 | 3ad2antl3 1119 |
. . . . . . . . . . . . . 14
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ z ∈ p) →
z ∈
B) |
68 | 67, 49 | syl 15 |
. . . . . . . . . . . . 13
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ z ∈ p) →
(R ‘z) = if(z ∈ p, x, y)) |
69 | | iftrue 3669 |
. . . . . . . . . . . . . 14
⊢ (z ∈ p → if(z
∈ p,
x, y) =
x) |
70 | 69 | adantl 452 |
. . . . . . . . . . . . 13
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ z ∈ p) →
if(z ∈
p, x,
y) = x) |
71 | 68, 70 | eqtrd 2385 |
. . . . . . . . . . . 12
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ z ∈ p) →
(R ‘z) = x) |
72 | 67, 42 | syl 15 |
. . . . . . . . . . . 12
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ z ∈ p) →
((R ‘z) = x ↔
zRx)) |
73 | 71, 72 | mpbid 201 |
. . . . . . . . . . 11
⊢ (((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) ∧ z ∈ p) →
zRx) |
74 | 73 | ex 423 |
. . . . . . . . . 10
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(z ∈
p → zRx)) |
75 | 65, 74 | impbid 183 |
. . . . . . . . 9
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(zRx ↔
z ∈
p)) |
76 | 33, 75 | syl5bb 248 |
. . . . . . . 8
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(z ∈
(◡R
“ {x}) ↔ z ∈ p)) |
77 | 76 | eqrdv 2351 |
. . . . . . 7
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(◡R
“ {x}) = p) |
78 | 32, 77 | eqtrd 2385 |
. . . . . 6
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
(W ‘R) = p) |
79 | 27 | enprmaplem2 6078 |
. . . . . . . 8
⊢ W Fn (A
↑m B) |
80 | | fnbrfvb 5359 |
. . . . . . . 8
⊢ ((W Fn (A
↑m B) ∧ R ∈ (A
↑m B)) →
((W ‘R) = p ↔
RWp)) |
81 | 79, 80 | mpan 651 |
. . . . . . 7
⊢ (R ∈ (A ↑m B) → ((W
‘R) = p ↔ RWp)) |
82 | 24, 81 | syl 15 |
. . . . . 6
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
((W ‘R) = p ↔
RWp)) |
83 | 78, 82 | mpbid 201 |
. . . . 5
⊢ ((x ≠ y ∧ A = {x, y} ∧ p ⊆ B) →
RWp) |
84 | 83 | 3expia 1153 |
. . . 4
⊢ ((x ≠ y ∧ A = {x, y}) →
(p ⊆
B → RWp)) |
85 | | brelrn 4961 |
. . . 4
⊢ (RWp → p ∈ ran W) |
86 | 84, 85 | syl6 29 |
. . 3
⊢ ((x ≠ y ∧ A = {x, y}) →
(p ⊆
B → p ∈ ran W)) |
87 | 2, 86 | syl5bi 208 |
. 2
⊢ ((x ≠ y ∧ A = {x, y}) →
(p ∈
℘B
→ p ∈ ran W)) |
88 | 87 | ssrdv 3279 |
1
⊢ ((x ≠ y ∧ A = {x, y}) →
℘B
⊆ ran W) |