NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtbi GIF version

Theorem mtbi 289
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
Hypotheses
Ref Expression
mtbi.1 ¬ φ
mtbi.2 (φψ)
Assertion
Ref Expression
mtbi ¬ ψ

Proof of Theorem mtbi
StepHypRef Expression
1 mtbi.1 . 2 ¬ φ
2 mtbi.2 . . 3 (φψ)
32biimpri 197 . 2 (ψφ)
41, 3mto 167 1 ¬ ψ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  mtbir  290  mtp-xorOLD  1537
  Copyright terms: Public domain W3C validator