New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtp-xorOLD | GIF version |
Description: Obsolete version of mtp-xor 1536 as of 11-Nov-2017. (Contributed by David A. Wheeler, 4-Jul-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mtp-xor.1 | ⊢ ¬ φ |
mtp-xor.2 | ⊢ (φ ⊻ ψ) |
Ref | Expression |
---|---|
mtp-xorOLD | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtp-xor.1 | . 2 ⊢ ¬ φ | |
2 | mtp-xor.2 | . . . . 5 ⊢ (φ ⊻ ψ) | |
3 | df-xor 1305 | . . . . 5 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) | |
4 | 2, 3 | mpbi 199 | . . . 4 ⊢ ¬ (φ ↔ ψ) |
5 | bicom 191 | . . . 4 ⊢ ((φ ↔ ψ) ↔ (ψ ↔ φ)) | |
6 | 4, 5 | mtbi 289 | . . 3 ⊢ ¬ (ψ ↔ φ) |
7 | xor3 346 | . . 3 ⊢ (¬ (ψ ↔ φ) ↔ (ψ ↔ ¬ φ)) | |
8 | 6, 7 | mpbi 199 | . 2 ⊢ (ψ ↔ ¬ φ) |
9 | 1, 8 | mpbir 200 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |