| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > con4bii | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| con4bii.1 | ⊢ (¬ φ ↔ ¬ ψ) |
| Ref | Expression |
|---|---|
| con4bii | ⊢ (φ ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4bii.1 | . 2 ⊢ (¬ φ ↔ ¬ ψ) | |
| 2 | notbi 286 | . 2 ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) | |
| 3 | 1, 2 | mpbir 200 | 1 ⊢ (φ ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: 2false 339 19.35 1600 2ralor 2781 gencbval 2904 eq0 3565 ab0 3570 uni0b 3917 |
| Copyright terms: Public domain | W3C validator |