New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con4bii | GIF version |
Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bii.1 | ⊢ (¬ φ ↔ ¬ ψ) |
Ref | Expression |
---|---|
con4bii | ⊢ (φ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bii.1 | . 2 ⊢ (¬ φ ↔ ¬ ψ) | |
2 | notbi 286 | . 2 ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) | |
3 | 1, 2 | mpbir 200 | 1 ⊢ (φ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 2false 339 19.35 1600 2ralor 2780 gencbval 2903 eq0 3564 ab0 3569 uni0b 3916 |
Copyright terms: Public domain | W3C validator |