NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtbii GIF version

Theorem mtbii 293
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
Hypotheses
Ref Expression
mtbii.min ¬ ψ
mtbii.maj (φ → (ψχ))
Assertion
Ref Expression
mtbii (φ → ¬ χ)

Proof of Theorem mtbii
StepHypRef Expression
1 mtbii.min . 2 ¬ ψ
2 mtbii.maj . . 3 (φ → (ψχ))
32biimprd 214 . 2 (φ → (χψ))
41, 3mtoi 169 1 (φ → ¬ χ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  ax9  1949
  Copyright terms: Public domain W3C validator