New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimprd | GIF version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimprd | ⊢ (φ → (χ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (χ → χ) | |
2 | biimprd.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | syl5ibr 212 | 1 ⊢ (φ → (χ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: syl6bir 220 mpbird 223 sylibrd 225 sylbird 226 con4bid 284 mtbid 291 mtbii 293 imbi1d 308 biimpar 471 prlem1 928 spfw 1691 spw 1694 cbvalw 1701 cbvalvw 1702 alcomiw 1704 nfimd 1808 ax10lem2 1937 ax10lem4 1941 dral1 1965 cbval 1984 speiv 2000 ax16i 2046 a16gALT 2049 sbequi 2059 sb9i 2094 dral1-o 2154 a16g-o 2186 cleqh 2450 pm13.18 2588 rspcimdv 2956 rspcedv 2959 moi2 3017 moi 3019 sspsstr 3374 unsneqsn 3887 opkth1g 4130 peano5 4409 ssfin 4470 tfincl 4492 sucoddeven 4511 eventfin 4517 oddtfin 4518 spfininduct 4540 vfinspeqtncv 4553 iss 5000 tz6.12c 5347 fveqres 5355 fvun1 5379 fvopab3ig 5387 dffo4 5423 fconst5 5455 ndmovordi 5621 clos1induct 5880 enprmaplem3 6078 enprmaplem5 6080 leconnnc 6218 nchoicelem12 6300 |
Copyright terms: Public domain | W3C validator |