New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtoi | GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ χ |
mtoi.2 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
mtoi | ⊢ (φ → ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ χ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ¬ χ) |
3 | mtoi.2 | . 2 ⊢ (φ → (ψ → χ)) | |
4 | 2, 3 | mtod 168 | 1 ⊢ (φ → ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtbii 293 mtbiri 294 sp 1747 spOLD 1748 equsalhwOLD 1839 dvelimv 1939 ax9o 1950 nndisjeq 4430 sfinltfin 4536 vfin1cltv 4548 nulnnn 4557 nmembers1lem2 6270 |
Copyright terms: Public domain | W3C validator |