NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtoi GIF version

Theorem mtoi 169
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
Hypotheses
Ref Expression
mtoi.1 ¬ χ
mtoi.2 (φ → (ψχ))
Assertion
Ref Expression
mtoi (φ → ¬ ψ)

Proof of Theorem mtoi
StepHypRef Expression
1 mtoi.1 . . 3 ¬ χ
21a1i 10 . 2 (φ → ¬ χ)
3 mtoi.2 . 2 (φ → (ψχ))
42, 3mtod 168 1 (φ → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mtbii  293  mtbiri  294  sp  1747  spOLD  1748  equsalhwOLD  1839  dvelimv  1939  ax9o  1950  nndisjeq  4430  sfinltfin  4536  vfin1cltv  4548  nulnnn  4557  nmembers1lem2  6270
  Copyright terms: Public domain W3C validator