| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ χ |
| mtoi.2 | ⊢ (φ → (ψ → χ)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (φ → ¬ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ χ | |
| 2 | 1 | a1i 10 | . 2 ⊢ (φ → ¬ χ) |
| 3 | mtoi.2 | . 2 ⊢ (φ → (ψ → χ)) | |
| 4 | 2, 3 | mtod 168 | 1 ⊢ (φ → ¬ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mtbii 293 mtbiri 294 sp 1747 spOLD 1748 equsalhwOLD 1839 dvelimv 1939 ax9o 1950 nndisjeq 4430 sfinltfin 4536 vfin1cltv 4548 nulnnn 4557 nmembers1lem2 6270 |
| Copyright terms: Public domain | W3C validator |