NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtbiri GIF version

Theorem mtbiri 294
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
mtbiri.min ¬ χ
mtbiri.maj (φ → (ψχ))
Assertion
Ref Expression
mtbiri (φ → ¬ ψ)

Proof of Theorem mtbiri
StepHypRef Expression
1 mtbiri.min . 2 ¬ χ
2 mtbiri.maj . . 3 (φ → (ψχ))
32biimpd 198 . 2 (φ → (ψχ))
41, 3mtoi 169 1 (φ → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  psstr  3374  n0i  3556  pw10  4162  0nelsuc  4401  ltfinirr  4458  peano4  4558  addccan2  4560  phi011lem1  4599  ndmfvrcl  5351  xpnedisj  5514  oprssdm  5613  ndmovrcl  5617  ncssfin  6152  ncspw1eu  6160  nntccl  6171  ceclb  6184  ce0ncpw1  6186  cecl  6187  nclecid  6198  le0nc  6201  addlecncs  6210  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator