New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtbiri | GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
mtbiri.min | ⊢ ¬ χ |
mtbiri.maj | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
mtbiri | ⊢ (φ → ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbiri.min | . 2 ⊢ ¬ χ | |
2 | mtbiri.maj | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 2 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
4 | 1, 3 | mtoi 169 | 1 ⊢ (φ → ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: psstr 3374 n0i 3556 pw10 4162 0nelsuc 4401 ltfinirr 4458 peano4 4558 addccan2 4560 phi011lem1 4599 ndmfvrcl 5351 xpnedisj 5514 oprssdm 5613 ndmovrcl 5617 ncssfin 6152 ncspw1eu 6160 nntccl 6171 ceclb 6184 ce0ncpw1 6186 cecl 6187 nclecid 6198 le0nc 6201 addlecncs 6210 nnc3n3p1 6279 |
Copyright terms: Public domain | W3C validator |