| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mtbird | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 10-May-1994.) |
| Ref | Expression |
|---|---|
| mtbird.min | ⊢ (φ → ¬ χ) |
| mtbird.maj | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| mtbird | ⊢ (φ → ¬ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbird.min | . 2 ⊢ (φ → ¬ χ) | |
| 2 | mtbird.maj | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 2 | biimpd 198 | . 2 ⊢ (φ → (ψ → χ)) |
| 4 | 1, 3 | mtod 168 | 1 ⊢ (φ → ¬ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: eqneltrd 2446 neleqtrrd 2449 ltfinirr 4458 nnadjoin 4521 vfin1cltv 4548 fvun1 5380 nnc3n3p1 6279 nnc3p1n3p2 6281 nchoicelem1 6290 nchoicelem2 6291 nchoicelem14 6303 |
| Copyright terms: Public domain | W3C validator |