NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanbi12i GIF version

Theorem nanbi12i 1300
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.)
Hypotheses
Ref Expression
nanbii.1 (φψ)
nanbi12i.2 (χθ)
Assertion
Ref Expression
nanbi12i ((φ χ) ↔ (ψ θ))

Proof of Theorem nanbi12i
StepHypRef Expression
1 nanbii.1 . 2 (φψ)
2 nanbi12i.2 . 2 (χθ)
3 nanbi12 1297 . 2 (((φψ) (χθ)) → ((φ χ) ↔ (ψ θ)))
41, 2, 3mp2an 653 1 ((φ χ) ↔ (ψ θ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator