NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanbi2i GIF version

Theorem nanbi2i 1299
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
Hypothesis
Ref Expression
nanbii.1 (φψ)
Assertion
Ref Expression
nanbi2i ((χ φ) ↔ (χ ψ))

Proof of Theorem nanbi2i
StepHypRef Expression
1 nanbii.1 . 2 (φψ)
2 nanbi2 1296 . 2 ((φψ) → ((χ φ) ↔ (χ ψ)))
31, 2ax-mp 5 1 ((χ φ) ↔ (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nincompl  4073
  Copyright terms: Public domain W3C validator