New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nanbi2i | GIF version |
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
nanbi2i | ⊢ ((χ ⊼ φ) ↔ (χ ⊼ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbii.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | nanbi2 1296 | . 2 ⊢ ((φ ↔ ψ) → ((χ ⊼ φ) ↔ (χ ⊼ ψ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((χ ⊼ φ) ↔ (χ ⊼ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nincompl 4073 |
Copyright terms: Public domain | W3C validator |