NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nebi GIF version

Theorem nebi 2588
Description: Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.)
Assertion
Ref Expression
nebi ((A = BC = D) ↔ (ABCD))

Proof of Theorem nebi
StepHypRef Expression
1 id 19 . . 3 ((A = BC = D) → (A = BC = D))
21necon3bid 2552 . 2 ((A = BC = D) → (ABCD))
3 id 19 . . 3 ((ABCD) → (ABCD))
43necon4bid 2583 . 2 ((ABCD) → (A = BC = D))
52, 4impbii 180 1 ((A = BC = D) ↔ (ABCD))
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator