NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2552
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (φ → (A = BC = D))
Assertion
Ref Expression
necon3bid (φ → (ABCD))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2519 . 2 (AB ↔ ¬ A = B)
2 necon3bid.1 . . 3 (φ → (A = BC = D))
32necon3bbid 2551 . 2 (φ → (¬ A = BCD))
41, 3syl5bb 248 1 (φ → (ABCD))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  nebi  2588  nchoicelem17  6306
  Copyright terms: Public domain W3C validator