NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon1ad GIF version

Theorem necon1ad 2584
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.)
Hypothesis
Ref Expression
necon1ad.1 (φ → (¬ ψA = B))
Assertion
Ref Expression
necon1ad (φ → (ABψ))

Proof of Theorem necon1ad
StepHypRef Expression
1 df-ne 2519 . 2 (AB ↔ ¬ A = B)
2 necon1ad.1 . . 3 (φ → (¬ ψA = B))
32con1d 116 . 2 (φ → (¬ A = Bψ))
41, 3syl5bi 208 1 (φ → (ABψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  nchoicelem15  6304
  Copyright terms: Public domain W3C validator