NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon1bd GIF version

Theorem necon1bd 2585
Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1bd.1 (φ → (ABψ))
Assertion
Ref Expression
necon1bd (φ → (¬ ψA = B))

Proof of Theorem necon1bd
StepHypRef Expression
1 necon1bd.1 . . 3 (φ → (ABψ))
21con3d 125 . 2 (φ → (¬ ψ → ¬ AB))
3 nne 2521 . 2 ABA = B)
42, 3syl6ib 217 1 (φ → (¬ ψA = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  fvclss  5463
  Copyright terms: Public domain W3C validator