NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon2bbii GIF version

Theorem necon2bbii 2573
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bbii.1 (φAB)
Assertion
Ref Expression
necon2bbii (A = B ↔ ¬ φ)

Proof of Theorem necon2bbii
StepHypRef Expression
1 necon2bbii.1 . . . 4 (φAB)
21bicomi 193 . . 3 (ABφ)
32necon1bbii 2569 . 2 φA = B)
43bicomi 193 1 (A = B ↔ ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  dfaddc2  4382  xpeq0  5047
  Copyright terms: Public domain W3C validator