NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neor GIF version

Theorem neor 2601
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
Assertion
Ref Expression
neor ((A = B ψ) ↔ (ABψ))

Proof of Theorem neor
StepHypRef Expression
1 df-or 359 . 2 ((A = B ψ) ↔ (¬ A = Bψ))
2 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
32imbi1i 315 . 2 ((ABψ) ↔ (¬ A = Bψ))
41, 3bitr4i 243 1 ((A = B ψ) ↔ (ABψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator