| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > neor | GIF version | ||
| Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
| Ref | Expression |
|---|---|
| neor | ⊢ ((A = B ∨ ψ) ↔ (A ≠ B → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 359 | . 2 ⊢ ((A = B ∨ ψ) ↔ (¬ A = B → ψ)) | |
| 2 | df-ne 2519 | . . 3 ⊢ (A ≠ B ↔ ¬ A = B) | |
| 3 | 2 | imbi1i 315 | . 2 ⊢ ((A ≠ B → ψ) ↔ (¬ A = B → ψ)) |
| 4 | 1, 3 | bitr4i 243 | 1 ⊢ ((A = B ∨ ψ) ↔ (A ≠ B → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 = wceq 1642 ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-ne 2519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |