NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neanior GIF version

Theorem neanior 2602
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neanior ((AB CD) ↔ ¬ (A = B C = D))

Proof of Theorem neanior
StepHypRef Expression
1 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
2 df-ne 2519 . . 3 (CD ↔ ¬ C = D)
31, 2anbi12i 678 . 2 ((AB CD) ↔ (¬ A = B ¬ C = D))
4 pm4.56 481 . 2 ((¬ A = B ¬ C = D) ↔ ¬ (A = B C = D))
53, 4bitri 240 1 ((AB CD) ↔ ¬ (A = B C = D))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-ne 2519
This theorem is referenced by:  nelpri  3755
  Copyright terms: Public domain W3C validator