NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necomd GIF version

Theorem necomd 2600
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
Hypothesis
Ref Expression
necomd.1 (φAB)
Assertion
Ref Expression
necomd (φBA)

Proof of Theorem necomd
StepHypRef Expression
1 necomd.1 . 2 (φAB)
2 necom 2598 . 2 (ABBA)
31, 2sylib 188 1 (φBA)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-cleq 2346  df-ne 2519
This theorem is referenced by:  difsnb  3851  vfinncvntnn  4549  vfinncvntsp  4550  nchoicelem12  6301  nchoicelem17  6306
  Copyright terms: Public domain W3C validator