| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > necomd | GIF version | ||
| Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| necomd.1 | ⊢ (φ → A ≠ B) |
| Ref | Expression |
|---|---|
| necomd | ⊢ (φ → B ≠ A) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomd.1 | . 2 ⊢ (φ → A ≠ B) | |
| 2 | necom 2598 | . 2 ⊢ (A ≠ B ↔ B ≠ A) | |
| 3 | 1, 2 | sylib 188 | 1 ⊢ (φ → B ≠ A) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-cleq 2346 df-ne 2519 |
| This theorem is referenced by: difsnb 3851 vfinncvntnn 4549 vfinncvntsp 4550 nchoicelem12 6301 nchoicelem17 6306 |
| Copyright terms: Public domain | W3C validator |