New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfimOLD | GIF version |
Description: If x is not free in φ and ψ, it is not free in (φ → ψ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfim.1 | ⊢ Ⅎxφ |
nfim.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfimOLD | ⊢ Ⅎx(φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
3 | nfim.2 | . . . 4 ⊢ Ⅎxψ | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxψ) |
5 | 2, 4 | nfimd 1808 | . 2 ⊢ ( ⊤ → Ⅎx(φ → ψ)) |
6 | 5 | trud 1323 | 1 ⊢ Ⅎx(φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤ wtru 1316 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |