New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbimd | GIF version |
Description: Deduction form of bound-variable hypothesis builder hbim 1817. (Contributed by NM, 1-Jan-2002.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) |
Ref | Expression |
---|---|
hbimd.1 | ⊢ (φ → ∀xφ) |
hbimd.2 | ⊢ (φ → (ψ → ∀xψ)) |
hbimd.3 | ⊢ (φ → (χ → ∀xχ)) |
Ref | Expression |
---|---|
hbimd | ⊢ (φ → ((ψ → χ) → ∀x(ψ → χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbimd.1 | . . . 4 ⊢ (φ → ∀xφ) | |
2 | hbimd.2 | . . . 4 ⊢ (φ → (ψ → ∀xψ)) | |
3 | 1, 2 | nfdh 1767 | . . 3 ⊢ (φ → Ⅎxψ) |
4 | hbimd.3 | . . . 4 ⊢ (φ → (χ → ∀xχ)) | |
5 | 1, 4 | nfdh 1767 | . . 3 ⊢ (φ → Ⅎxχ) |
6 | 3, 5 | nfimd 1808 | . 2 ⊢ (φ → Ⅎx(ψ → χ)) |
7 | 6 | nfrd 1763 | 1 ⊢ (φ → ((ψ → χ) → ∀x(ψ → χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: spimehOLD 1821 dvelimhw 1849 dvelimv 1939 dvelimh 1964 dvelimALT 2133 dvelimf-o 2180 |
Copyright terms: Public domain | W3C validator |