NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nic-stdmp GIF version

Theorem nic-stdmp 1455
Description: Derive the standard modus ponens from nic-mp 1436. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nic-smin φ
nic-smaj (φψ)
Assertion
Ref Expression
nic-stdmp ψ

Proof of Theorem nic-stdmp
StepHypRef Expression
1 nic-smin . 2 φ
2 nic-smaj . . 3 (φψ)
3 nic-dfim 1434 . . . 4 (((φ (ψ ψ)) (φψ)) (((φ (ψ ψ)) (φ (ψ ψ))) ((φψ) (φψ))))
43nic-bi2 1454 . . 3 ((φψ) ((φ (ψ ψ)) (φ (ψ ψ))))
52, 4nic-mp 1436 . 2 (φ (ψ ψ))
61, 5nic-mp 1436 1 ψ
Colors of variables: wff setvar class
Syntax hints:  wi 4   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator