New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-bi2 | GIF version |
Description: Inference to extract the other side of an implication from a 'biconditional' definition. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-bi2.1 | ⊢ ((φ ⊼ ψ) ⊼ ((φ ⊼ φ) ⊼ (ψ ⊼ ψ))) |
Ref | Expression |
---|---|
nic-bi2 | ⊢ (ψ ⊼ (φ ⊼ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-bi2.1 | . . . 4 ⊢ ((φ ⊼ ψ) ⊼ ((φ ⊼ φ) ⊼ (ψ ⊼ ψ))) | |
2 | 1 | nic-isw2 1446 | . . 3 ⊢ ((φ ⊼ ψ) ⊼ ((ψ ⊼ ψ) ⊼ (φ ⊼ φ))) |
3 | nic-id 1443 | . . 3 ⊢ (ψ ⊼ (ψ ⊼ ψ)) | |
4 | 2, 3 | nic-iimp1 1447 | . 2 ⊢ (ψ ⊼ (φ ⊼ ψ)) |
5 | 4 | nic-idel 1449 | 1 ⊢ (ψ ⊼ (φ ⊼ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-stdmp 1455 nic-luk1 1456 nic-luk2 1457 nic-luk3 1458 |
Copyright terms: Public domain | W3C validator |