NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nsyli GIF version

Theorem nsyli 133
Description: A negated syllogism inference. (Contributed by NM, 3-May-1994.)
Hypotheses
Ref Expression
nsyli.1 (φ → (ψχ))
nsyli.2 (θ → ¬ χ)
Assertion
Ref Expression
nsyli (φ → (θ → ¬ ψ))

Proof of Theorem nsyli
StepHypRef Expression
1 nsyli.2 . 2 (θ → ¬ χ)
2 nsyli.1 . . 3 (φ → (ψχ))
32con3d 125 . 2 (φ → (¬ χ → ¬ ψ))
41, 3syl5 28 1 (φ → (θ → ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  spimehOLD  1821
  Copyright terms: Public domain W3C validator